期刊论文详细信息
BMC Veterinary Research
Phylogeny of Mycoplasma bovis isolates from Hungary based on multi locus sequence typing and multiple-locus variable-number tandem repeat analysis
Miklós Gyuranecz1  Károly Erdélyi2  László Makrai3  Ibolya Turcsányi2  Nóra Schweitzer2  Szilárd Jánosi2  Lilla Fekete1  Zsuzsa Kreizinger1  Kinga M Sulyok1 
[1] Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, Budapest 1143, Hungary;Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary;Faculty of Veterinary Science, Szent István University, Hungária körút 23-25, Budapest 1143, Hungary
关键词: VNTR;    Phylogeny;    Mycoplasma bovis;    MLVA;    MLST;    Genotyping;    Cattle;   
Others  :  1119189
DOI  :  10.1186/1746-6148-10-108
 received in 2013-12-18, accepted in 2014-04-28,  发布年份 2014
PDF
【 摘 要 】

Background

Mycoplasma bovis is an important pathogen causing pneumonia, mastitis and arthritis in cattle worldwide. As this agent is primarily transmitted by direct contact and spread through animal movements, efficient genotyping systems are essential for the monitoring of the disease and for epidemiological investigations. The aim of this study was to compare and evaluate the multi locus sequence typing (MLST) and the multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) through the genetic characterization of M. bovis isolates from Hungary.

Results

Thirty one Hungarian M. bovis isolates grouped into two clades by MLST. Two strains had the same sequence type (ST) as reference strain PG45, while the other twenty nine Hungarian isolates formed a novel clade comprising five subclades. Isolates originating from the same herds had the same STs except for one case. The same isolates formed two main clades and several subclades and branches by MLVA. One clade contained the reference strain PG45 and three isolates, while the other main clade comprised the rest of the strains. Within-herd strain divergence was also detected by MLVA. Little congruence was found between the results of the two typing systems.

Conclusions

MLST is generally considered an intermediate scale typing method and it was found to be discriminatory among the Hungarian M. bovis isolates. MLVA proved to be an appropriate fine scale typing tool for M. bovis as this method was able to distinguish closely related strains isolated from the same farm. We recommend the combined use of the two methods for the genotyping of M. bovis isolates. Strains have to be characterized first by MLST followed by the fine scale typing of identical STs with MLVA.

【 授权许可】

   
2014 Sulyok et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150208050518592.pdf 409KB PDF download
Figure 3. 61KB Image download
Figure 2. 103KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Caswell JL, Bateman KG, Cai HY, Castillo-Alcala F: Mycoplasma bovis in respiratory disease of feedlot cattle. Vet Clin North Am Food Anim Pract 2010, 26:365-379.
  • [2]Maunsell FP, Donovan GA: Mycoplasma bovis infections in young calves. Vet Clin North Am Food Anim Pract 2009, 25:139-177.
  • [3]Byrne WJ, Ball HJ, Brice N, McCormack R, Baker SE, Ayling RD, Nicholas RA: Application of an indirect ELISA to milk samples to identify cows with Mycoplasma bovis mastitis. Vet Rec 2000, 146:368-369.
  • [4]Pfützner H, Sachse K: Mycoplasma bovis as an agent of mastitis, pneumonia, arthritis and genital disorders in cattle. Rev Sci Tech 1996, 15:1477-1494.
  • [5]Nicholas RA, Ayling RD: Mycoplasma bovis: disease, diagnosis, and control. Res Vet Sci 2003, 74:105-112.
  • [6]Citti C, Lischewski A, Siebert-Gulle K, Rosengarten R: Limitations of pulse field gel electrophoresis for the typing of Mycoplasma bovis. In Mycoplasmas Of Ruminants: Pathogenicity, Diagnostics And Molecular Genetics. Edited by Poveda JB, Ferandez A, Johansson KE, Frey J. Brussels: European Comission; 2000:46-49.
  • [7]Hotzel H, Schneider B, Sachse K: Investigation of Mycoplasma bovis field isolates using PCR fingerprinting. In Mycoplasmas Of Ruminants: Pathogenicity, Diagnostics, Epidemiology And Molecular Genetics. Edited by Leori G, Santini F, Scanziani E, Frey J. Brussels: European Comission; 1998:17-19.
  • [8]McAuliffe L, Kokotovic B, Ayling RD, Nicholas RA: Molecular epidemiological analysis of Mycoplasma bovis isolates from the United Kingdom shows two genetically distinct clusters. J Clin Microbiol 2004, 42:4556-4565.
  • [9]Pinho L, Thompson G, Rosenbusch R, Carvalheira J: Genotyping of Mycoplasma bovis isolates using multiple-locus variable-number tandem-repeat analysis. J Microbiol Methods 2012, 88:377-385.
  • [10]Manso-Silván L, Dupuy V, Lysnyansky I, Ozdemir U, Thiaucourt F: Phylogeny and molecular typing of Mycoplasma agalactiae and Mycoplasma bovis by multilocus sequencing. Vet Microbiol 2012, 161:104-112.
  • [11]Keim P, Johansson A, Wagner DM: Molecular epidemiology, evolution, and ecology of Francisella. Ann N Y Acad Sci 2007, 1105:30-66.
  • [12]Margos G, Vollmer SA, Ogden NH, Fish D: Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 2011, 11:1545-1563.
  • [13]Spergser J, Macher K, Kargl M, Lysnyansky I, Rosengaten R: Emergence, re-emergence, spread and host species crossing of Mycoplasma bovis in the Austrian Alps caused by a single endemic strain. Vet Microbiol 2013, 164:299-306.
  • [14]Amram E, Freed M, Khateb N, Mikula I, Blum S, Spergser J, Sharir B, Ozeri R, Harrus S, Lysnyansky I: Multiple locus variable number tandem repeat analysis of Mycoplasma bovis isolated from local and imported cattle. Vet J 2013, 197:286-290.
  • [15]Subramaniam S, Bergonier D, Poumarat F, Capaul S, Schlatter Y, Nicolet J, Frey J: Species identification of Mycoplasma bovis and Mycoplasma agalactiae based on the uvrC genes by PCR. Mol Cell Probes 1998, 12:161-169.
  • [16]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 1999, 41:95-98.
  • [17]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [18]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26:2462-2463.
  • [19]Hunter PR, Gaston MA: Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 1988, 26:2465-2466.
  • [20]Carrico JA, Silva-Costa C, Melo-Cristino J, Pinto FR, de Lencastre H, Almeida JS, Ramirez M: Illustration of a common framework for relating multiple typing methods by application to macrolide resistant Streptococcus pyogenes. J Clin Microbiol 2006, 44:2524-2532.
  • [21]Comparing Partitions Website http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Home webcite
  • [22]Dryad https://datadryad.org/ webcite, doi:10.5061/dryad.rc8q4
  • [23]Al Dahouk S, Le Fleche P, Nöckler K, Jacques I, Grayon M, Scholz HC, Tomaso H, Vergnaud G, Neubauer H: Evaluation of Brucella MLVA typing for human brucellosis. J Microbiol Methods 2007, 69:137-145.
  文献评价指标  
  下载次数:32次 浏览次数:5次