期刊论文详细信息
Clinical Epigenetics
LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes
Marie-Claude Vohl4  Laurent Biertho5  Odette Lescelleur5  Simon Biron5  Simon Marceau5  Alexandre Bélisle6  Louis Pérusse1  Yves Deshaies2  André Tchernof3  Valérie Turcot4 
[1] Department of Kinesiology, Université Laval, 2300 de la Terrasse Street, Québec City, G1V 0A6, Canada;Department of Medicine, Université Laval, 1050 de la Médecine Av, Québec City, G1V 0A6, Canada;Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Sainte-Foy Rd, Québec City, G1V 4G5, Canada;Department of Food Sciences and Nutrition, Université Laval, 2425 de l’Agriculture Av, Québec City, G1V 0A6, Canada;Department of Surgery, Université Laval, 1050 de la Médecine Av, Québec City, G1V 0A6, Canada;Genotyping Platform Team, McGill University and Génome Québec Innovation Center, 740 Docteur-Penfield Av, Montréal, H3A 1A4, Canada
关键词: Visceral adipose tissue;    Severe obesity;    Metabolic syndrome;    LINE-1;    Global DNA methylation;    Fasting glucose;    Epigenetics;    Blood pressure;   
Others  :  791393
DOI  :  10.1186/1868-7083-4-10
 received in 2012-03-14, accepted in 2012-05-21,  发布年份 2012
PDF
【 摘 要 】

Background

Epigenetic mechanisms may be involved in the regulation of genes found to be differentially expressed in the visceral adipose tissue (VAT) of severely obese subjects with (MetS+) versus without (MetS-) metabolic syndrome (MetS). Long interspersed nuclear element 1 (LINE-1) elements DNA methylation levels (%meth) in blood, a marker of global DNA methylation, have recently been associated with fasting glucose, blood lipids, heart diseases and stroke.

Aim

To test whether LINE-1%meth levels in VAT are associated with MetS phenotypes and whether they can predict MetS risk in severely obese individuals.

Methods

DNA was extracted from VAT of 34 men (MetS-: n = 14, MetS+: n = 20) and 152 premenopausal women (MetS-: n = 84; MetS+: n = 68) undergoing biliopancreatic diversion for the treatment of obesity. LINE-1%meth levels were assessed by pyrosequencing of sodium bisulfite-treated DNA.

Results

The mean LINE-1%meth in VAT was of 75.8% (SD = 3.0%). Multiple linear regression analyses revealed that LINE-1%meth was negatively associated with fasting glucose levels (β = -0.04; P = 0.03), diastolic blood pressure (β =  -0.65; P = 0.03) and MetS status (β = -0.04; P = 0.004) after adjustments for the effects of age, sex, waist circumference (except for MetS status) and smoking. While dividing subjects into quartiles based on their LINE-1%meth (Q1 to Q4: lower %meth to higher %meth levels), greater risk were observed in the first (Q1: odds ratio (OR) = 4.37, P = 0.004) and the second (Q2: OR = 4.76, P = 0.002) quartiles compared to Q4 (1.00) when adjusting for age, sex and smoking.

Conclusions

These results suggest that lower global DNA methylation, assessed by LINE-1 repetitive elements methylation analysis, would be associated with a greater risk for MetS in the presence of obesity.

【 授权许可】

   
2012 Turcot et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705013051492.pdf 258KB PDF download
【 参考文献 】
  • [1]Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120:1640-1645.
  • [2]Mathieu P, Lemieux I, Despres JP: Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 2010, 87:407-416.
  • [3]Pajunen P, Kotronen A, Korpi-Hyovalti E, Keinanen-Kiukaanniemi S, Oksa H, Niskanen L, Saaristo T, Saltevo JT, Sundvall J, Vanhala M, Uusitupa M, Peltonen M: Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey. BMC Publ Health 2011, 11:754. BioMed Central Full Text
  • [4]Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R: Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond) 2011, 35:971-981.
  • [5]Bluher M: Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 2009, 117:241-250.
  • [6]Bluher M: The distinction of metabolically 'healthy' from 'unhealthy' obese individuals. Curr Opin Lipidol 2010, 21:38-43.
  • [7]Bouchard L, Tchernof A, Deshaies Y, Marceau S, Lescelleur O, Biron S, Vohl MC: ZFP36: a promising candidate gene for obesity-related metabolic complications identified by converging genomics. Obes Surg 2007, 17:372-382.
  • [8]Hardy OT, Perugini RA, Nicoloro SM, Gallagher-Dorval K, Puri V, Straubhaar J, Czech MP: Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg Obes Relat Dis 2011, 7:60-67.
  • [9]Klimcakova E, Roussel B, Kovacova Z, Kovacikova M, Siklova-Vitkova M, Combes M, Hejnova J, Decaunes P, Maoret JJ, Vedral T, Viguerie N, Bourlier V, Bouloumie A, Stich V, Langin D: Macrophage gene expression is related to obesity and the metabolic syndrome in human subcutaneous fat as well as in visceral fat. Diabetologia 2011, 54:876-887.
  • [10]Delisle H: Programming of chronic disease by impaired fetal nutrition: evidence and implications for policy and intervention strategies. Report of the Department of Nutrition for Health and Development, Department of Noncommunicable Disease Prevention and Health Promotion. Geneva: World Health Organization; 2002.
  • [11]McMillen IC, Robinson JS: Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005, 85:571-633.
  • [12]Symonds ME, Sebert SP, Hyatt MA, Budge H: Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol 2009, 5:604-610.
  • [13]Fall CH: Evidence for the intra-uterine programming of adiposity in later life. Ann Hum Biol 2011, 38:410-428.
  • [14]Muhlhausler B, Smith SR: Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol Metab 2009, 20:51-57.
  • [15]Bruce KD, Cagampang FR: Epigenetic priming of the metabolic syndrome. Toxicol Mech Methods 2011, 21:353-361.
  • [16]Campion J, Milagro FI, Martinez JA: Individuality and epigenetics in obesity. Obes Rev 2009, 10:383-392.
  • [17]Relton CL, Davey SG: Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med 2010, 7:e1000356.
  • [18]Zhu ZZ, Hou L, Bollati V, Tarantini L, Marinelli B, Cantone L, Yang AS, Vokonas P, Lissowska J, Fustinoni S, Pesatori AC, Bonzini M, Apostoli P, Costa G, Bertazzi PA, Chow WH, Schwartz J, Baccarelli A: Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol 2010, 41:126-139.
  • [19]Nelson HH, Marsit CJ, Kelsey KT: Global methylation in exposure biology and translational medical science. Environ Health Perspect 2011, 119:1528-1533.
  • [20]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [21]Sunami E, de MM, Vu A, Turner RR, Hoon DS: LINE-1 hypomethylation during primary colon cancer progression. PLoS One 2011, 6:e18884.
  • [22]Zhu ZZ, Sparrow D, Hou L, Tarantini L, Bollati V, Litonjua AA, Zanobetti A, Vokonas P, Wright RO, Baccarelli A, Schwartz J: Repetitive element hypomethylation in blood leukocyte DNA and cancer incidence, prevalence, and mortality in elderly individuals: the Normative Aging Study. Cancer Causes Control 2011, 22:437-447.
  • [23]Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P, Schwartz J: Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 2010, 21:819-828.
  • [24]Pearce MS, McConnell JC, Potter C, Barrett LM, Parker L, Mathers JC, Relton CL: Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol 2012, 41:210-217.
  • [25]Cash HL, McGarvey ST, Houseman EA, Marsit CJ, Hawley NL, Lambert-Messerlian GM, Viali S, Tuitele J, Kelsey KT: Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders. Epigenetics 2011, 6:1257-1264.
  • [26]Marceau P, Hould FS, Simard S, Lebel S, Bourque RA, Potvin M, Biron S: Biliopancreatic diversion with duodenal switch. World J Surg 1998, 22:947-954.
  • [27]The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus: Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26(Suppl 1):S5-S20.
  • [28]Vohl MC, Houde A, Lebel S, Hould FS, Marceau P: Effects of the peroxisome proliferator-activated receptor-gamma co-activator-1 Gly482Ser variant on features of the metabolic syndrome. Mol Genet Metab 2005, 86:300-306.
  • [29]Vohl MC, Sladek R, Robitaille J, Gurd S, Marceau P, Richard D, Hudson TJ, Tchernof A: A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res 2004, 12:1217-1222.
  • [30]Alberti KG, Zimmet P, Shaw J: Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006, 23:469-480.
  • [31]Expert Panel on Detection EaToHBCiA: Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285:2486-2497.
  • [32]England R, Pettersson M: Pyro Q-CpG: quantitative analysis of methylation in multiple CpG sites by pyrosequencing. Nature Methods 2005., 2
  • [33]Turcot V, Bouchard L, Faucher G, Tchernof A, Deshaies Y, Perusse L, Belisle A, Marceau S, Biron S, Lescelleur O, Biertho L, Vohl MC: DPP4 gene DNA methylation in the omentum is associated with its gene expression and plasma lipid profile in severe obesity. Obesity (Silver Spring) 2011, 19:388-395.
  • [34]Kile ML, Baccarelli A, Tarantini L, Hoffman E, Wright RO, Christiani DC: Correlation of global and gene-specific DNA methylation in maternal-infant pairs. PLoS One 2010, 5:e13730.
  • [35]Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP: A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004, 32:e38.
  • [36]Baccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, Sparrow D, Vokonas P, Schwartz J: Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics 2010, 5:222-228.
  • [37]Choi JY, James SR, Link PA, McCann SE, Hong CC, Davis W, Nesline MK, Ambrosone CB, Karpf AR: Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis 2009, 30:1889-1897.
  • [38]Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM: DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics 2011, 6:828-837.
  • [39]Irahara N, Nosho K, Baba Y, Shima K, Lindeman NI, Hazra A, Schernhammer ES, Hunter DJ, Fuchs CS, Ogino S: Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn 2010, 12:177-183.
  • [40]Pavicic W, Joensuu EI, Nieminen T, Peltomaki P: LINE-1 hypomethylation in familial and sporadic cancer. J Mol Med (Berl) 2012.
  • [41]Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, Gagne LA, Banister C, Padbury JF, Marsit CJ: In utero exposures, infant growth, and DNA methylation of repetitive element and developmentally related genes in human placenta. Environ Health Perspect 2012, 120:296-302.
  • [42]Kim KY, Kim DS, Lee SK, Lee IK, Kang JH, Chang YS, Jacobs DR, Steffes M, Lee DH: Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ Health Perspect 2010, 118:370-374.
  • [43]Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K, Vishwanatha JK, Santella RM, Morabia A: Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 2011, 6:623-629.
  • [44]El-Maarri O, Walier M, Behne F, van UJ, Singer H, Diaz-Lacava A, Nusgen N, Niemann B, Watzka M, Reinsberg J, van dV, Wienker T, Stoffel-Wagner B, Schwaab R, Oldenburg J: Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS One 2011, 6:e16252.
  • [45]Singer H, Walier M, Nusgen N, Meesters C, Schreiner F, Woelfle J, Fimmers R, Wienker T, Kalscheuer VM, Becker T, Schwaab R, Oldenburg J, El-Maarri O: Methylation of L1Hs promoters is lower on the inactive X, has a tendency of being higher on autosomes in smaller genomes and shows inter-individual variability at some loci. Hum Mol Genet 2012, 21:219-235.
  • [46]Poage GM, Houseman EA, Christensen BC, Butler RA, Avissar-Whiting M, McClean MD, Waterboer T, Pawlita M, Marsit CJ, Kelsey KT: Global hypomethylation identifies loci targeted for hypermethylation in head and neck cancer. Clin Cancer Res 2011, 17:3579-3589.
  • [47]Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW: Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005, 33:6823-6836.
  • [48]Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, Liao Y, Santella RM, Terry MB: Global methylation profiles in DNA from different blood cell types. Epigenetics 2011, 6:76-85.
  • [49]Kazazian HH Jr, Goodier JL: LINE drive. retrotransposition and genome instability. Cell 2002, 110:277-280.
  • [50]Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, Kotsinas A, Gorgoulis V, Field JK, Liloglou T: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 2009, 124:81-87.
  • [51]Lee DH: Persistent organic pollutants and obesity-related metabolic dysfunction: focusing on type 2 diabetes. Epidemiol Health 2012, 34:e2012002.
  • [52]Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT, Malde MK, Du ZY, Chavey C, Fajas L, Lundebye AK, Brand CL, Vidal H, Kristiansen K, Froyland L: Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 2010, 118:465-471.
  • [53]Sell H, Eckel J: Adipose tissue inflammation: novel insight into the role of macrophages and lymphocytes. Curr Opin Clin Nutr Metab Care 2010, 13:366-370.
  • [54]Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong HX, Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dosch HM, Engleman EG: B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 2011, 17:610-617.
  • [55]Ulrich CM, Reed MC, Nijhout HF: Modeling folate, one-carbon metabolism, and DNA methylation. Nutr Rev 2008, 66(Suppl 1):S27-S30.
  文献评价指标  
  下载次数:10次 浏览次数:5次