期刊论文详细信息
Fibrogenesis & Tissue Repair
Neutrophil roles in left ventricular remodeling following myocardial infarction
Merry L Lindsey1  Andriy Yabluchanskiy2  Yonggang Ma2 
[1] Research and Medicine Services, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA;Jackson Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
关键词: Matrix metalloproteinases;    Degranulation;    Innate immunity;    Inflammation;    Myocardial infarction;    PMNs;   
Others  :  803192
DOI  :  10.1186/1755-1536-6-11
 received in 2012-12-29, accepted in 2013-04-11,  发布年份 2013
PDF
【 摘 要 】

Polymorphonuclear granulocytes (PMNs; neutrophils) serve as key effector cells in the innate immune system and provide the first line of defense against invading microorganisms. In addition to producing inflammatory cytokines and chemokines and undergoing a respiratory burst that stimulates the release of reactive oxygen species, PMNs also degranulate to release components that kill pathogens. Recently, neutrophil extracellular traps have been shown to be an alternative way to trap microorganisms and contain infection. PMN-derived granule components are also involved in multiple non-infectious inflammatory processes, including the response to myocardial infarction (MI). In this review, we will discuss the biological characteristics, recruitment, activation, and removal of PMNs, as well as the roles of PMN-derived granule proteins in inflammation and innate immunity, focusing on the MI setting when applicable. We also discuss future perspectives that will direct research in PMN biology.

【 授权许可】

   
2013 Ma et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708034918834.pdf 798KB PDF download
Figure 3. 50KB Image download
Figure 2. 49KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Day RB, Link DC: Regulation of neutrophil trafficking from the bone marrow. Cell Mol Life Sci 2012, 69:1415-1423.
  • [2]Akpek M, Kaya MG, Lam YY, Sahin O, Elcik D, Celik T, Ergin A, Gibson CM: Relation of neutrophil/lymphocyte ratio to coronary flow to in-hospital major adverse cardiac events in patients with ST-elevated myocardial infarction undergoing primary coronary intervention. Am J Cardiol 2012, 110:621-627.
  • [3]Meissner J, Irfan A, Twerenbold R, Mueller S, Reiter M, Haaf P, Reichlin T, Schaub N, Winkler K, Pfister O, et al.: Use of neutrophil count in early diagnosis and risk stratification of AMI. Am J Med 2011, 124:534-542.
  • [4]Chia S, Nagurney JT, Brown DF, Raffel OC, Bamberg F, Senatore F, Wackers FJ, Jang IK: Association of leukocyte and neutrophil counts with infarct size, left ventricular function and outcomes after percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol 2009, 103:333-337.
  • [5]Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi BR: Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J 1986, 112:682-690.
  • [6]Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR: Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983, 67:1016-1023.
  • [7]Hammerman H, Kloner RA, Hale S, Schoen FJ, Braunwald E: Dose-dependent effects of short-term methylprednisolone on myocardial infarct extent, scar formation, and ventricular function. Circulation 1983, 68:446-452.
  • [8]Borregaard N, Theilgaard-Monch K, Cowland JB, Stahle M, Sorensen OE: Neutrophils and keratinocytes in innate immunity–cooperative actions to provide antimicrobial defense at the right time and place. J Leukoc Biol 2005, 77:439-443.
  • [9]Barletta KE, Ley K, Mehrad B: Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 2012, 32:856-864.
  • [10]Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A: Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012, 30:459-489.
  • [11]Dancey JT, Deubelbeiss KA, Harker LA, Finch CA: Neutrophil kinetics in man. J Clin Invest 1976, 58:705-715.
  • [12]Galli SJ, Borregaard N, Wynn TA: Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 2011, 12:1035-1044.
  • [13]Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JA, Tesselaar K, Koenderman L: In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 2010, 116:625-627.
  • [14]Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A: Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 1992, 80:2012-2020.
  • [15]Borregaard N: Neutrophils, from marrow to microbes. Immunity 2010, 33:657-670.
  • [16]Mary JY: Normal human granulopoiesis revisited. II. Bone marrow data. Biomed Pharmacother 1985, 39:66-77.
  • [17]Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC: G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 2002, 17:413-423.
  • [18]Ivey CL, Williams FM, Collins PD, Jose PJ, Williams TJ: Neutrophil chemoattractants generated in two phases during reperfusion of ischemic myocardium in the rabbit. Evidence for a role for C5a and interleukin-8. J Clin Invest 1995, 95:2720-2728.
  • [19]Kim D, Haynes CL: Neutrophil chemotaxis within a competing gradient of chemoattractants. Anal Chem 2012, 84:6070-6078.
  • [20]Frangogiannis NG: Regulation of the inflammatory response in cardiac repair. Circ Res 2012, 110:159-173.
  • [21]Bratton DL, Henson PM: Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 2011, 32:350-357.
  • [22]Hayashi F, Means TK, Luster AD: Toll-like receptors stimulate human neutrophil function. Blood 2003, 102:2660-2669.
  • [23]Greenblatt MB, Aliprantis A, Hu B, Glimcher LH: Calcineurin regulates innate antifungal immunity in neutrophils. J Exp Med 2010, 207:923-931.
  • [24]Kerrigan AM, Dennehy KM, Mourao-Sa D, Faro-Trindade I, Willment JA, Taylor PR, Eble JA, Reis e Sousa C, Brown GD: CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 2009, 182:4150-4157.
  • [25]Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN: Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010, 16:228-231.
  • [26]Tamassia N, Le Moigne V, Rossato M, Donini M, McCartney S, Calzetti F, Colonna M, Bazzoni F, Cassatella MA: Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils. J Immunol 2008, 181:6563-6573.
  • [27]Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DP: The innate immune response in reperfused myocardium. Cardiovasc Res 2012, 94:276-283.
  • [28]Prince LR, Whyte MK, Sabroe I, Parker LC: The role of TLRs in neutrophil activation. Curr Opin Pharmacol 2011, 11:397-403.
  • [29]Ma Y, Zhang X, Bao H, Mi S, Cai W, Yan H, Wang Q, Wang Z, Yan J, Fan G, et al.: Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS One 2012, 7:e40763.
  • [30]Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, Kobayashi A, Maruyama I, Yamada S, Hasegawa N, et al.: Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med 2004, 170:1310-1316.
  • [31]Furze RC, Rankin SM: Neutrophil mobilization and clearance in the bone marrow. Immunology 2008, 125:281-288.
  • [32]Soehnlein O, Lindbom L: Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010, 10:427-439.
  • [33]Esmann L, Idel C, Sarkar A, Hellberg L, Behnen M, Moller S, van Zandbergen G, Klinger M, Kohl J, Bussmeyer U, et al.: Phagocytosis of apoptotic cells by neutrophil granulocytes: diminished proinflammatory neutrophil functions in the presence of apoptotic cells. J Immunol 2010, 184:391-400.
  • [34]Ciz M, Denev P, Kratchanova M, Vasicek O, Ambrozova G, Lojek A: Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid Med Cell Longev 2012, 2012:181295.
  • [35]Kleniewska P, Piechota A, Skibska B, Goraca A: The NADPH oxidase family and its inhibitors. Arch Immunol Ther Exp (Warsz) 2012, 60:277-294.
  • [36]Liu XH, Pan LL, Deng HY, Xiong QH, Wu D, Huang GY, Gong QH, Zhu YZ: Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4. Free Radic Biol Med 2013, 54:93-104.
  • [37]Qin F, Simeone M, Patel R: Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med 2007, 43:271-281.
  • [38]Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y: Reactive oxygen species promote angiogenesis in the infarcted rat heart. Int J Exp Pathol 2009, 90:621-629.
  • [39]Faurschou M, Borregaard N: Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 2003, 5:1317-1327.
  • [40]Soehnlein O, Weber C, Lindbom L: Neutrophil granule proteins tune monocytic cell function. Trends Immunol 2009, 30:538-546.
  • [41]Prokopowicz Z, Marcinkiewicz J, Katz DR, Chain BM: Neutrophil myeloperoxidase: soldier and statesman. Arch Immunol Ther Exp (Warsz) 2012, 60:43-54.
  • [42]Rudolph V, Goldmann BU, Bos C, Rudolph TK, Klinke A, Friedrichs K, Lau D, Wegscheider K, Haddad M, Meinertz T, Baldus S: Diagnostic value of MPO plasma levels in patients admitted for suspected myocardial infarction. Int J Cardiol 2011, 153:267-271.
  • [43]Mocatta TJ, Pilbrow AP, Cameron VA, Senthilmohan R, Frampton CM, Richards AM, Winterbourn CC: Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol 2007, 49:1993-2000.
  • [44]Askari AT, Brennan ML, Zhou X, Drinko J, Morehead A, Thomas JD, Topol EJ, Hazen SL, Penn MS: Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 2003, 197:615-624.
  • [45]Vasilyev N, Williams T, Brennan ML, Unzek S, Zhou X, Heinecke JW, Spitz DR, Topol EJ, Hazen SL, Penn MS: Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 2005, 112:2812-2820.
  • [46]Thukkani AK, Martinson BD, Albert CJ, Vogler GA, Ford DA: Neutrophil-mediated accumulation of 2-ClHDA during myocardial infarction: 2-ClHDA-mediated myocardial injury. Am J Physiol Heart Circ Physiol 2005, 288:H2955-H2964.
  • [47]Perera NC, Schilling O, Kittel H, Back W, Kremmer E, Jenne DE: NSP4, an elastase-related protease in human neutrophils with arginine specificity. Proc Natl Acad Sci U S A 2012, 109:6229-6234.
  • [48]Pham CT: Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 2006, 6:541-550.
  • [49]Afshar-Kharghan V, Thiagarajan P: Leukocyte adhesion and thrombosis. Curr Opin Hematol 2006, 13:34-39.
  • [50]Yu X, Kennedy RH, Liu SJ: JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 2003, 278:16304-16309.
  • [51]Jackson PL, Xu X, Wilson L, Weathington NM, Clancy JP, Blalock JE, Gaggar A: Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Mol Med 2010, 16:159-166.
  • [52]Bidouard JP, Duval N, Kapui Z, Herbert JM, O’Connor SE, Janiak P: SSR69071, an elastase inhibitor, reduces myocardial infarct size following ischemia-reperfusion injury. Eur J Pharmacol 2003, 461:49-52.
  • [53]Akiyama D, Hara T, Yoshitomi O, Maekawa T, Cho S, Sumikawa K: Postischemic infusion of sivelestat sodium hydrate, a selective neutrophil elastase inhibitor, protects against myocardial stunning in swine. J Anesth 2010, 24:575-581.
  • [54]Pendergraft WF 3rd, Rudolph EH, Falk RJ, Jahn JE, Grimmler M, Hengst L, Jennette JC, Preston GA: Proteinase 3 sidesteps caspases and cleaves p21(Waf1/Cip1/Sdi1) to induce endothelial cell apoptosis. Kidney Int 2004, 65:75-84.
  • [55]Ramaha A, Patston PA: Release and degradation of angiotensin I and angiotensin II from angiotensinogen by neutrophil serine proteinases. Arch Biochem Biophys 2002, 397:77-83.
  • [56]Ng LL, Khan SQ, Narayan H, Quinn P, Squire IB, Davies JE: Proteinase 3 and prognosis of patients with acute myocardial infarction. Clin Sci (Lond) 2011, 120:231-238.
  • [57]Yan L, Borregaard N, Kjeldsen L, Moses MA: The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 2001, 276:37258-37265.
  • [58]Coles M, Diercks T, Muehlenweg B, Bartsch S, Zolzer V, Tschesche H, Kessler H: The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. J Mol Biol 1999, 289:139-157.
  • [59]Yndestad A, Landro L, Ueland T, Dahl CP, Flo TH, Vinge LE, Espevik T, Froland SS, Husberg C, Christensen G, et al.: Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J 2009, 30:1229-1236.
  • [60]Lindberg S, Pedersen SH, Mogelvang R, Jensen JS, Flyvbjerg A, Galatius S, Magnusson NE: Prognostic utility of neutrophil gelatinase-associated lipocalin in predicting mortality and cardiovascular events in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Am Coll Cardiol 2012, 60:339-345.
  • [61]Lindsey ML, Zamilpa R: Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 2012, 30:31-41.
  • [62]Lin M, Jackson P, Tester AM, Diaconu E, Overall CM, Blalock JE, Pearlman E: Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J Pathol 2008, 173:144-153.
  • [63]Harty MW, Muratore CS, Papa EF, Gart MS, Ramm GA, Gregory SH, Tracy TF Jr: Neutrophil depletion blocks early collagen degradation in repairing cholestatic rat livers. Am J Pathol 2010, 176:1271-1281.
  • [64]Gioia M, Monaco S, Fasciglione GF, Coletti A, Modesti A, Marini S, Coletta M: Characterization of the mechanisms by which gelatinase A, neutrophil collagenase, and membrane-type metalloproteinase MMP-14 recognize collagen I and enzymatically process the two alpha-chains. J Mol Biol 2007, 368:1101-1113.
  • [65]van den Borne SW, Cleutjens JP, Hanemaaijer R, Creemers EE, Smits JF, Daemen MJ, Blankesteijn WM: Increased matrix metalloproteinase-8 and −9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol 2009, 18:37-43.
  • [66]Romanic AM, Harrison SM, Bao W, Burns-Kurtis CL, Pickering S, Gu J, Grau E, Mao J, Sathe GM, Ohlstein EH, Yue TL: Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovasc Res 2002, 54:549-558.
  • [67]Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, Burns AR, Rossen RD, Michael L, Entman M: Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 2001, 103:2181-2187.
  • [68]Romanic AM, Burns-Kurtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH: Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 2001, 68:799-814.
  • [69]Kelly D, Cockerill G, Ng LL, Thompson M, Khan S, Samani NJ, Squire IB: Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J 2007, 28:711-718.
  • [70]Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT: Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000, 106:55-62.
  • [71]Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, McClister DM Jr, Su H, Gannon J, MacGillivray C, et al.: Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 2006, 290:H232-H239.
  • [72]Yabluchanskiy A, Li Y, Chilton RJ, Lindsey ML: Matrix metalloproteinases: drug targets for myocardial infarction. Curr Drug Targets 2013, 14:276-286.
  • [73]Zamilpa R, Ibarra J, de Castro Bras LE, Ramirez TA, Nguyen N, Halade GV, Zhang J, Dai Q, Dayah T, Chiao YA, et al.: Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. J Mol Cell Cardiol 2012, 53:599-608.
  • [74]Richter R, Bistrian R, Escher S, Forssmann WG, Vakili J, Henschler R, Spodsberg N, Frimpong-Boateng A, Forssmann U: Quantum proteolytic activation of chemokine CCL15 by neutrophil granulocytes modulates mononuclear cell adhesiveness. J Immunol 2005, 175:1599-1608.
  • [75]Pham CT: Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 2008, 40:1317-1333.
  • [76]Lim JK, Lu W, Hartley O, DeVico AL: N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4–68 variant. J Leukoc Biol 2006, 80:1395-1404.
  • [77]Herrmann SM, Funke-Kaiser H, Schmidt-Petersen K, Nicaud V, Gautier-Bertrand M, Evans A, Kee F, Arveiler D, Morrison C, Orzechowski HD, et al.: Characterization of polymorphic structure of cathepsin G gene: role in cardiovascular and cerebrovascular diseases. Arterioscler Thromb Vasc Biol 2001, 21:1538-1543.
  • [78]Tapper H, Karlsson A, Morgelin M, Flodgaard H, Herwald H: Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles. Blood 2002, 99:1785-1793.
  • [79]Soehnlein O, Lindbom L: Neutrophil-derived azurocidin alarms the immune system. J Leukoc Biol 2009, 85:344-351.
  • [80]Rasmussen PB, Bjorn S, Hastrup S, Nielsen PF, Norris K, Thim L, Wiberg FC, Flodgaard H: Characterization of recombinant human HBP/CAP37/azurocidin, a pleiotropic mediator of inflammation-enhancing LPS-induced cytokine release from monocytes. FEBS Lett 1996, 390:109-112.
  • [81]Soehnlein O, Kai-Larsen Y, Frithiof R, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, Herwald H, Agerberth B, Lindbom L: Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 2008, 118:3491-3502.
  • [82]Brandt K, Lundell K, Brismar K: Neutrophil-derived azurocidin cleaves insulin-like growth factor-binding protein-1, -2 and −4. Growth Horm IGF Res 2011, 21:167-173.
  • [83]Di Gennaro A, Kenne E, Wan M, Soehnlein O, Lindbom L, Haeggstrom JZ: Leukotriene B4-induced changes in vascular permeability are mediated by neutrophil release of heparin-binding protein (HBP/CAP37/azurocidin). FASEB J 2009, 23:1750-1757.
  • [84]Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ: Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 2004, 22:181-215.
  • [85]Yang D, Chen Q, Chertov O, Oppenheim JJ: Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 2000, 68:9-14.
  • [86]Territo MC, Ganz T, Selsted ME, Lehrer R: Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 1989, 84:2017-2020.
  • [87]Presicce P, Giannelli S, Taddeo A, Villa ML, Della Bella S: Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J Leukoc Biol 2009, 86:941-948.
  • [88]Ward PP, Paz E, Conneely OM: Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci 2005, 62:2540-2548.
  • [89]Crouch SP, Slater KJ, Fletcher J: Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 1992, 80:235-240.
  • [90]Bucki R, Leszczynska K, Namiot A, Sokolowski W: Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp (Warsz) 2010, 58:15-25.
  • [91]Lai Y, Gallo RL: AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009, 30:131-141.
  • [92]Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE: The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002, 169:3883-3891.
  • [93]Soehnlein O, Wantha S, Simsekyilmaz S, Doring Y, Megens RT, Mause SF, Drechsler M, Smeets R, Weinandy S, Schreiber F, et al.: Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci Transl Med 2011, 3:103ra198.
  • [94]Doring Y, Drechsler M, Wantha S, Kemmerich K, Lievens D, Vijayan S, Gallo RL, Weber C, Soehnlein O: Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res 2012, 110:1052-1056.
  • [95]Fortin CF, Sohail A, Sun Q, McDonald PP, Fridman R, Fulop T: MT6-MMP is present in lipid rafts and faces inward in living human PMNs but translocates to the cell surface during neutrophil apoptosis. Int Immunol 2010, 22:637-649.
  • [96]Starr AE, Bellac CL, Dufour A, Goebeler V, Overall CM: Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. J Biol Chem 2012, 287:13382-13395.
  • [97]Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 2011, 18:581-588.
  • [98]Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A: Neutrophil extracellular traps kill bacteria. Science 2004, 303:1532-1535.
  • [99]Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, Bengtsson AA, Blom AM: Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 2012, 188:3522-3531.
  • [100]de Boer OJ, Li X, Teeling P, Mackaay C, Ploegmakers HJ, van der Loos CM, Daemen MJ, de Winter RJ, van der Wal AC: Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 2013, 109:290-297.
  • [101]Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H, Bidzhekov K, Rottenberg ME, Weber C, Lindbom L: Neutrophil secretion products pave the way for inflammatory monocytes. Blood 2008, 112:1461-1471.
  • [102]Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F: Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 2004, 21:215-226.
  • [103]Mantovani A, Cassatella MA, Costantini C, Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011, 11:519-531.
  • [104]Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16:183-194.
  • [105]Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J: Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 2008, 103:485-492.
  • [106]Ma Y, Halade GV, Zhang J, Ramirez TA, Levin D, Voorhees A, Jin YF, Han HC, Manicone AM, Lindsey ML: Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting m2 macrophage activation. Circ Res 2013, 112:675-688.
  • [107]Ma Y, Halade GV, Lindsey ML: Extracellular matrix and fibroblast communication following myocardial infarction. J Cardiovasc Transl Res 2012, 5:848-857.
  文献评价指标  
  下载次数:0次 浏览次数:10次