期刊论文详细信息
BMC Veterinary Research
Immune response of healthy horses to DNA constructs formulated with a cationic lipid transfection reagent
J.-M. V. Cavalleri2  K. Feige2  A. Moritz3  P. Jaehnig7  B. Wagner9  C. Pfarrer4  H. Murua Escobar6  S. Willenbrock1  B. Wittig5  D. Oswald5  C. Juhls5  H.-J. Schuberth8  M. Koy8  P. Steinig2  Christiane L. Schnabel2 
[1] University of Veterinary Medicine Hannover, Small Animal Clinic, Buenteweg 9, Hannover, 30559, Germany;University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, Hannover, 30559, Germany;Department of Veterinary Medicine, Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-Universitaet, Frankfurter Strasse 126, Giessen, 35392, Germany;University of Veterinary Medicine Hannover, Institute of Anatomy, Bischofsholer Damm 15, Hannover, 30173, Germany;Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany;Division of Medicine, Clinic III, Haematology, Oncology and Palliative Medicine, University of Rostock, Rostock, 18057, Germany;pj statistics, Niedstrasse 16, Berlin, 12159, Germany;University of Veterinary Medicine Hannover, Immunology Unit, Bischofsholer Damm 15, Hannover, 30173, Germany;Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell Universit, 240 Farrier Rd, Ithaca 14853, NY, USA
关键词: Cationic lipid;    DNA vaccine;    Transfection reagent;    IL-18;    IL-12;    CpG;    Cytokines;    MIDGE vector;    Grey horse;    Equine melanoma;   
Others  :  1219106
DOI  :  10.1186/s12917-015-0452-3
 received in 2014-12-05, accepted in 2015-06-09,  发布年份 2015
PDF
【 摘 要 】

Background

Deoxyribonucleic acid (DNA) vaccines are used for experimental immunotherapy of equine melanoma. The injection of complexed linear DNA encoding interleukin (IL)-12/IL-18 induced partial tumour remission in a clinical study including 27 grey horses. To date, the detailed mechanism of the anti-tumour effect of this treatment is unknown.

Results

In the present study, the clinical and cellular responses of 24 healthy horses were monitored over 72 h after simultaneous intradermal and intramuscular application of equine IL-12/IL-18 DNA (complexed with a transfection reagent) or comparative substances (transfection reagent only, nonsense DNA, nonsense DNA depleted of CG).

Although the strongest effect was observed in horses treated with expressing DNA, horses in all groups treated with DNA showed systemic responses. In these horses treated with DNA, rectal temperatures were elevated after treatment and serum amyloid A increased. Total leukocyte and neutrophil counts increased, while lymphocyte numbers decreased. The secretion of tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) from peripheral mononuclear blood cells ex vivo increased after treatments with DNA, while IL-10 secretion decreased. Horses treated with DNA had significantly higher myeloid cell numbers and chemokine (C-X-C motif) ligand (CXCL)-10 expression in skin samples at the intradermal injection sites compared to horses treated with transfection reagent only, suggesting an inflammatory response to DNA treatment.

In horses treated with expressing DNA, however, local CXCL-10 expression was highest and immunohistochemistry revealed more intradermal IL-12-positive cells when compared to the other treatment groups.

In contrast to non-grey horses, grey horses showed fewer effects of DNA treatments on blood lymphocyte counts, TNFα secretion and myeloid cell infiltration in the dermis.

Conclusion

Treatment with complexed linear DNA constructs induced an inflammatory response independent of the coding sequence and of CG motif content. Expressing IL-12/IL-18 DNA locally induces expression of the downstream mediator CXCL-10.

The grey horses included appeared to display an attenuated immune response to DNA treatment, although grey horses bearing melanoma responded to this treatment with moderate tumour remission in a preceding study. Whether the different immunological reactivity compared to other horses may contributes to the melanoma susceptibility of grey horses remains to be elucidated.

【 授权许可】

   
2015 Schnabel et al.

【 预 览 】
附件列表
Files Size Format View
20150715041902227.pdf 2992KB PDF download
Fig. 8. 40KB Image download
Fig. 7. 23KB Image download
Fig. 6. 62KB Image download
Fig. 5. 82KB Image download
Fig. 4. 72KB Image download
Fig. 3. 81KB Image download
Fig. 2. 75KB Image download
Fig. 1. 64KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Cavalleri JMV, Mählmann K, Steinig P, Feige K. Aetiology, clinical presentation and current treatment options of equine malignant melanoma - a review of the literature. Pferdeheilkunde. 2014; 30(4):455-60.
  • [2]Cotchin E. A general survey of tumours in the horse. Equine Vet J. 1977; 9(1):16-21.
  • [3]Valentine BA. Survey of equine cutaneous neoplasia in the Pacific Northwest. J Vet Diagn Invest. 2006; 18(1):123-6.
  • [4]Phillips JC, Lembcke LM. Equine melanocytic tumors. Vet Clin North Am Equine Pract. 2013; 29(3):673-87.
  • [5]Mcfadyean J. Equine melanomatosis. J Comp Path Ther. 1933; 46:186-204.
  • [6]Jeglum KA. Melanomas. In: Current therapy in equine medicine. 4th ed. Company RWBS, editor. W.B. Saunders Company, Pennsylvania, USA; 1999: p.399-400.
  • [7]Heinzerling LM, Feige K, Rieder S, Akens MK, Dummer R, Stranzinger G et al.. Tumor regression induced by intratumoral injection of DNA coding for human interleukin 12 into melanoma metastases in gray horses. J Mol Med. 2001; 78(12):692-702.
  • [8]Müller JMV, Feige K, Wunderlin P, Hodl A, Meli ML, Seltenhammer M et al.. Double-blind placebo-controlled study with interleukin-18 and interleukin-12-encoding plasmid DNA shows antitumor effect in metastatic melanoma in gray horses. J Immunother. 2011; 34(1):58-64.
  • [9]Phillips JC, Lembcke LM, Noltenius CE, Newman SJ, Blackford JT, Grosenbaugh DA et al.. Evaluation of tyrosinase expression in canine and equine melanocytic tumors. Am J Vet Res. 2012; 73(2):272-8.
  • [10]Dinarello CA. Interleukin-18. Methods. 1999; 19(1):121-32.
  • [11]Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al.. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993; 178(4):1223-30.
  • [12]Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, Bajetta E et al.. Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin 12. Cancer Res. 2000; 60(13):3559-68.
  • [13]Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002; 13(2):155-68.
  • [14]Shizuo A. The role of IL-18 in innate immunity. Curr Opin Immunol. 2000; 12(1):59-63.
  • [15]Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003; 3(2):133-46.
  • [16]Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G et al.. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007; 13(16):4677-85.
  • [17]Coughlin CM, Salhany KE, Wysocka M, Aruga E, Kurzawa H, Chang AE et al.. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 1998; 101(6):1441-52.
  • [18]Mählmann K, Feige K, Juhls C, Endmann A, Schuberth H-J, Oswald D, et al. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma. BMC Vet Res. 2015. accepted; doi:. 10. 1186/s12917-015-0422-9 webcite
  • [19]Lopez-Fuertes L, Perez-Jimenez E, Vila-Coro AJ, Sack F, Moreno S, Konig SA et al.. DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine. 2002; 21(3–4):247-57.
  • [20]Moreno S, López-Fuertes L, Vila-Coro AJ, Sack F, Smith CA, Konig SA et al.. DNA immunisation with minimalistic expression constructs. Vaccine. 2004; 22(13–14):1709-16.
  • [21]Schirmbeck R, König-Merediz S, Riedl P, Kwissa M, Sack F, Schroff M et al.. Priming of immune responses to hepatitis B surface antigen with minimal DNA expression constructs modified with a nuclear localization signal peptide. J Mol Med. 2001; 79(5–6):343-50.
  • [22]Zheng C, Juhls C, Oswald D, Sack F, Westfehling I, Wittig B et al.. Effect of different nuclear localization sequences on the immune responses induced by a MIDGE vector encoding bovine herpesvirus-1 glycoprotein D. Vaccine. 2006; 24(21):4625-9.
  • [23]Endmann A, Baden M, Weisermann E, Kapp K, Schroff M, Kleuss C et al.. Immune response induced by a linear DNA vector: Influence of dose, formulation and route of injection. Vaccine. 2010; 28(21):3642-9.
  • [24]Audouy SA, de Leij LF, Hoekstra D, Molema G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res. 2002; 19(11):1599-605.
  • [25]Heinzerling L, Basch V, Maloy K, Johansen P1, Senti G, Wüthrich B et al.. Critical role for DNA vaccination frequency in induction of antigen-specific cytotoxic responses. Vaccine. 2006; 24(9):1389-94.
  • [26]Lopez AM, Hecker R, Mutwiri G, van Drunen Littel-van den Hurk S, Babiuk LA, Townsend HGG. Formulation with CpG ODN enhances antibody responses to an equine influenza virus vaccine. Vet Immunol Immunopathol. 2006; 114(1–2):103-10.
  • [27]Hafner M, Zawatzky R, Hirtreiter C, Buurman WA, Echtenacher B, Hehlgans T et al.. Antimetastatic effect of CpG DNA mediated by type I IFN. Cancer Res. 2001; 61(14):5523-8.
  • [28]McCluskie M, Weeratna R, Davis H. The role of CpG in DNA vaccines. Springer Semin Immunopathol. 2000; 22(1):125-32.
  • [29]Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology. 2013; 218(11):1312-21.
  • [30]Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S et al.. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010; 11(11):997-1004.
  • [31]Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al.. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009; 458(7237):514-8.
  • [32]Hornung V, Hartmann R, Ablasser A, Hopfner KP. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol. 2014; 14(8):521-8.
  • [33]Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F et al.. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol. 2006; 7(1):40-8.
  • [34]Jacobsen S, Kjelgaard-Hansen M, Hagbard Petersen H, Jensen AL. Evaluation of a commercially available human serum amyloid A (SAA) turbidometric immunoassay for determination of equine SAA concentrations. Vet J. 2006; 172(2):315-9.
  • [35]Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol. 2002; 32(7):1958-68.
  • [36]Barten MJ, Gummert JF, van Gelder T, Shorthouse R, Morris RE. Flow cytometric quantitation of calcium-dependent and -independent mitogen-stimulation of T cell functions in whole blood: inhibition by immunosuppressive drugs in vitro. J Immunol Methods. 2001; 253(1–2):95-112.
  • [37]He H, Courtney AN, Wieder E, Sastry KJ. Multicolor flow cytometry analyses of cellular immune response in rhesus macaques. J Vis Exp. 2010.
  • [38]Li L, Chi PD, Meng R, Yang BY, Wu CY. Abstract [Correlation of BrdU incorporation with activation and cytokine expression of T cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2008; 24(1):72-5.
  • [39]Lavoie-Lamoureux A, Maghni K, Lavoie J-P. Optimization of a procedure to accurately detect equine TNFalpha in serum samples. Vet Immunol Immunopathol. 2010; 138(1–2):118-23.
  • [40]Wagner B, Freer H. Development of a bead-based multiplex assay for simultaneous quantification of cytokines in horses. Vet Immunol Immunopathol. 2009; 127(3–4):242-8.
  • [41]Lillie RD, Fullmer HM. Histopathologic technic and practical histochemistry. McGraw-Hill, New York, NY, USA; 1976.
  • [42]Grosche A, Morton AJ, Polyak MMR, Matyjaszek S, Freeman DE. Detection of calprotectin and its correlation to the accumulation of neutrophils within equine large colon during ischaemia and reperfusion. Equine Vet J. 2008; 40(4):393-9.
  • [43]Schnabel CL, Wagner S, Wagner B, Duran MC, Babasyan S, Nolte I et al.. Evaluation of the reactivity of commercially available monoclonal antibodies with equine cytokines. Vet Immunol Immunopathol. 2013; 156(1–2):1-19.
  • [44]MacKay RJ. Inflammation in horses. Vet Clin North Am Equine Pract. 2000; 16(1):15-27.
  • [45]Reed SM, Bayly WM, Sellon DC. Equine internal medicine. Elsevier Health Sciences, St. Louis, MO, USA; 2009.
  • [46]Peiró JR, Barnabé PA, Cadioli FA, Cunha FQ, Lima VMF, Mendonça VH et al.. Effects of lidocaine infusion during experimental endotoxemia in horses. J Vet Intern Med. 2010; 24(4):940-8.
  • [47]Tousignant JD, Gates AL, Ingram LA, Johnson CL, Nietupski JB, Cheng SH et al.. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther. 2000; 11(18):2493-513.
  • [48]Jacobsen S, Andersen PH. The acute phase protein serum amyloid A (SAA) as a marker of inflammation in horses. Equine Vet Educ. 2007; 19(1):38-46.
  • [49]Jacobsen S, Niewold TA, Halling-Thomsen M, Nanni S, Olsen E, Lindegaard C et al.. Serum amyloid A isoforms in serum and synovial fluid in horses with lipopolysaccharide-induced arthritis. Vet Immunol Immunopathol. 2006; 110(3–4):325-30.
  • [50]Shanker A, Brooks AD, Jacobsen KM, Wine JW, Wiltrout RH, Yagita H et al.. Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity. Cancer Res. 2009; 69(16):6615-23.
  • [51]Endmann A, Oswald D, Riede O, Talman EG, Vos RE, Schroff M et al.. Combination of MIDGE-Th1 DNA vaccines with the cationic lipid SAINT-18: studies on formulation, biodistribution and vector clearance. Vaccine. 2014; 32(27):3460-7.
  • [52]Lembcke LM, Kania SA, Blackford JT, Trent DJ, Odoi A, Grosenbaugh DA et al.. Development of immunologic assays to measure response in horses vaccinated with xenogeneic plasmid DNA encoding human tyrosinase. J Equine Vet Sci. 2012; 32:607-15.
  • [53]Klier J, May A, Fuchs S, Schillinger U, Plank C, Winter G et al.. Immunostimulation of bronchoalveolar lavage cells from recurrent airway obstruction-affected horses by different CpG-classes bound to gelatin nanoparticles. Vet Immunol Immunopathol. 2011; 144(1/2):79-87.
  • [54]Wagner B, Hillegas JM, Brinker DR, Horohov DW, Antczak DF. Characterization of monoclonal antibodies to equine interleukin-10 and detection of T regulatory 1 cells in horses. Vet Immunol Immunopathol. 2008; 122(1–2):57-64.
  • [55]Dinarello CA. Proinflammatory cytokines. Chest. 2000; 118(2):503-8.
  • [56]Kelso A. Cytokines: principles and prospects. Immunol Cell Biol. 1998; 76(4):300-17.
  • [57]Petrovsky N, McNair P, Harrison LC. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine. 1998; 10(4):307-12.
  • [58]Cavaillon JM. Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-Grand). 2001; 47(4):695-702.
  • [59]Dow SW, Elmslie RE, Fradkin LG, Liggitt DH, Heath TD, Willson AP et al.. Intravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastases. Hum Gene Ther. 1999; 10(18):2961-72.
  • [60]Dow SW, Fradkin LG, Liggitt DH, Willson AP, Heath TD, Potter TA. Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol. 1999; 163(3):1552-61.
  • [61]Wattrang E, Berg M, Magnusson M. Immunostimulatory DNA activates production of type I interferons and interleukin-6 in equine peripheral blood mononuclear cells in vitro. Vet Immunol Immunopathol. 2005; 107(3–4):265-79.
  • [62]Wattrang E, Palm A-K, Wagner B. Cytokine production and proliferation upon in vitro oligodeoxyribonucleotide stimulation of equine peripheral blood mononuclear cells. Vet Immunol Immunopathol. 2012; 146(2):113-24.
  • [63]Leise BS, Yin C, Pettigrew A, Belknap JK. Proinflammatory cytokine responses of cultured equine keratinocytes to bacterial pathogen-associated molecular pattern motifs. Equine Vet J. 2010; 42(4):294-303.
  • [64]Bordin AI, Liu M, Nerren JR, Buntain SL, Brake CN, Kogut MH et al.. Neutrophil function of neonatal foals is enhanced in vitro by CpG oligodeoxynucleotide stimulation. Vet Immunol Immunopathol. 2012; 145(1–2):290-7.
  • [65]Schakowski F, Gorschluter M, Buttgereit P, Marten A, Lilienfeld-Toal MV, Junghans C et al.. Minimal size MIDGE vectors improve transgene expression in vivo. In Vivo. 2007; 21(1):17-23.
  • [66]Caracas HCPM, Maciel JVB, Martins PMRS, de Souza MMG, Maia LC. The use of lidocaine as an anti-inflammatory substance: a systematic review. J Dent. 2009; 37(2):93-7.
  • [67]Muir WW, Hubbell JAE. Equine anesthesia: monitoring and emergency therapy. St. Louis, Missouri, USA: Saunders Elsevier; 2008.
  • [68]Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X et al.. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity. 1998; 9(1):25-34.
  • [69]Faleiros RR, Nuovo GJ, Belknap JK. Calprotectin in myeloid and epithelial cells of laminae from horses with black walnut extract-induced laminitis. J Vet Intern Med. 2009; 23(1):174-81.
  • [70]Phillips JC, Blackford JT, Lembcke LM, Grosenbaugh DA, Leard T. Evaluation of needle-free injection devices for intramuscular vaccination in horses. J Equine Vet Sci. 2011; 31(12):738-43.
  • [71]Goubier A, Fuhrmann L, Forest L, Cachet N, Evrad-Blanchard M, Juillard V et al.. Superiority of needle-free transdermal plasmid delivery for the induction of antigen-specific IFNgamma T cell responses in the dog. Vaccine. 2008; 26(18):2186-90.
  • [72]Machelska H, Schroff M, Oswald D, Binder W, Sitte N, Mousa SA et al.. Peripheral non-viral MIDGE vector-driven delivery of beta-endorphin in inflammatory pain. Mol Pain. 2009; 5:72. BioMed Central Full Text
  • [73]Cassatella MA, Gasperini S, Calzetti F, Bertagnin A, Luster AD, McDonald PP. Regulated production of the interferon-γ-inducible protein − 10 (IP-10) chemokine by human neutrophils. Eur J Immunol. 1997; 27(1):111-5.
  • [74]Tannenbaum CS, Wicker N, Armstrong D, Tubbs R, Finke J, Bukowski RM et al.. Cytokine and chemokine expression in tumors of mice receiving systemic therapy with IL-12. J Immunol. 1996; 156(2):693-9.
  • [75]Heinzerling L, Burg G, Dummer R, Maier T, Oberholzer PA, Schultz J et al.. Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther. 2005; 16(1):35-48.
  • [76]Nagai H, Hara I, Horikawa T, Oka M, Kamidono S, Ichihashi M. Gene transfer of secreted-type modified interleukin-18 gene to B16F10 belanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation. J Investig Dermatol. 2002; 119(3):541-8.
  • [77]Durán MC, Willenbrock S, Müller J-MV, Nolte I, Feige K, Murua Escobar H. Establishment and evaluation of a bead-based luminex assay allowing simultaneous quantification of equine IL-12 and IFN gamma. Anticancer Res. 2013; 33(4):1325-36.
  • [78]Suagee JK, Corl BA, Crisman MV, Pleasant RS, Thatcher CD, Geor RJ. Relationships between body condition score and plasma inflammatory cytokines, insulin, and lipids in a mixed population of light-breed horses. J Vet Intern Med. 2013; 27(1):157-63.
  • [79]Schnabel CL, Steinig P, Schuberth HJ, Koy M, Wagner B, Wittig B et al.. Influences of age and sex on leukocytes of healthy horses and their ex vivo cytokine release. Vet Immunol Immunopathol. 2015; 165(1–2):64-74.
  • [80]Wilmink JM, Veenman JN, van den Boom R, Rutten VPMG, Niewold TA, Broekhuisen-Davies JM et al.. Differences in polymorphonucleocyte function and local inflammatory response between horses and ponies. Equine Vet J. 2003; 35(6):561-9.
  • [81]Adams AA, Breathnach CC, Katepalli MP, Kohler K, Horohov DW. Advanced age in horses affects divisional history of T cells and inflammatory cytokine production. Mech Ageing Dev. 2008; 129(11):656-64.
  • [82]Hansen S, Sun L, Baptiste KE, Fjeldborg J, Horohov DW. Age-related changes in intracellular expression of IFN-gamma and TNF-alpha in equine lymphocytes measured in bronchoalveolar lavage and peripheral blood. Dev Comp Immunol. 2013; 39(3):228-33.
  • [83]Katepalli MP, Adams AA, Lear TL, Horohov DW. The effect of age and telomere length on immune function in the horse. Dev Comp Immunol. 2008; 32(12):1409-15.
  • [84]Giraldo CE, Lopez C, Alvarez ME, Samudio IJ, Prades M, Carmona JU. Effects of the breed, sex and age on cellular content and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel. BMC Vet Res. 2013; 9:29. BioMed Central Full Text
  • [85]Rusek J, Klumplerova M, Molinkova D, Sedlinska M, Dusek L, Muzik J et al.. Genetics of anti-EHV antibody responses in a horse population. Res Vet Sci. 2013; 95(1):137-42.
  • [86]Weide B, Garbe C, Rammensee H-G, Pascolo S. Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett. 2008; 115(1):33-42.
  • [87]Rosengren Pielberg G, Golovko A, Sundstrom E, Curik I, Lennartsson J, Seltenhammer M et al.. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet. 2008; 40(8):1004-9.
  • [88]Comfort A. The longevity and mortality of thoroughbred mares. J Gerontol. 1958; 13(4):342-50.
  • [89]Mayr B, Niebauer GW, Gebhart W, Hofecker G, Kügl A, Schleger W. Untersuchungen an peripheren Leukozyten melanomtragender und melanomfreier Schimmelpferde verschiedener Altersstufen. Zentralbl Veterinarmed A. 1979; 26(5):417-24.
  文献评价指标  
  下载次数:79次 浏览次数:19次