期刊论文详细信息
Journal of Biomedical Science
Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment
Hassen Ben Abdennebi4  Joan Rosello-Catafau5  Dalila Saidane-Mosbahi4  Sonia Ghoul-Mazgar3  Abdel-Hédi Miled1  Kaouther Hadj-Ayed4  Thierry Hauet2  Mohamed Amine Zaouali5  Asma Mahfoudh-Boussaid4 
[1] Laboratory of biochemistry, faculty of pharmacy, university of Monastir, Monastir, Tunisia;Inserm U927, faculty of medicine and pharmacy, university of Poitiers, Poitiers, France;Laboratory of histology and embryology, faculty of dental medicine, university of Monastir, Monastir, Tunisia;Laboratory of human physiology, faculty of pharmacy, university of Monastir, Rue Avicenne, Monastir, 5000, Tunisia;Department of experimental pathology, Hepatic ischemia reperfusion unit, IIBB-CSIC, Barcelona, Spain
关键词: Mitochondria;    Endoplasmic reticulum stress;    Trimetazidine;    Ischemic postconditioning;    Ischemia-reperfusion;    Kidney;   
Others  :  824687
DOI  :  10.1186/1423-0127-19-71
 received in 2012-01-27, accepted in 2012-07-23,  发布年份 2012
PDF
【 摘 要 】

Background

Endoplasmic reticulum (ER) and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R). In the present study, we investigated whether the use of ischemic postconditioning (IPostC) and trimetazidine (TMZ) separately or combined could reduce ER stress and mitochondria damage after renal ischemia.

Methods

Kidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6), or to 6 cycles of ischemia/reperfusion (10-s each cycle) just after 60-min of warm ischemia (IPostC group, n = 6), or to i.p. injection of TMZ (3 mg/kg) 30-min before ischemia (TMZ group, n = 6), or to the combination of both treatments (IPostC+TMZ group, n = 6). The results of these experimental groups were compared to those of a sham-operated group in which rat renal pedicles were only dissected. Sodium reabsorption rate, creatinine clearance lactate deshydrogenase (LDH) activity in plasma, and concentration of malonedialdehyde (MDA) in tissue were determined. In addition, Western blot analysis was performed to identify the amounts of cytochrome c, c-JunNH2-terminal kinase (JNK), voltage-dependent anion channel (VDAC), glycogen synthase kinase 3-beta (GSK3-β), and ER stress parameters.

Results

IPostC or/and TMZ significantly decreased cytolysis, oxidative stress and improved renal function in comparison to I/R group. IPostC but not TMZ significantly attenuated ER stress parameters versus I/R group. Indeed, it down-regulated the glucose-regulated protein 78 (GRP78), the activating transcription factor 4 (ATF4), the RNA activated protein kinase (PKR)-like ER kinas (PERK), the X box binding protein-1 (XBP-1) and the caspase12 protein levels. TMZ treatment significantly augmented GSK3-β phosphorylation and reduced levels of cytochrome c and VDAC phosphorylation in comparison to IPostC application. The combination of both treatments gave a synergetic effect. It significantly improved the survival rate, attenuated cytolysis, oxidative stress and improved renal function.

Conclusion

This study revealed that IPostC protects kidney from I/R injury by suppressing ER stress while the beneficial effects of TMZ are mediated by mitochondria protection. The combination of both treatments ameliorated functional recovery.

【 授权许可】

   
2012 Mahfoudh-Boussaid et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713043212261.pdf 1998KB PDF download
Figure 8. 57KB Image download
Figure 7. 52KB Image download
Figure 6. 43KB Image download
Figure 5. 19KB Image download
Figure 4. 174KB Image download
Figure 3. 40KB Image download
Figure 2. 38KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Serviddio G, Romano AD, Gesualdo L, Tamborra R, Di Palma AM, Rollo T, Altomare E, Vendemiale G: Postconditioning is an effective strategy to reduce renal ischaemia/reperfusion injury. Nephrol Dial Transplant 2008, 23:1504-1512.
  • [2]Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74:1124-1136.
  • [3]Jiang SH, Liu CF, Zhang XL, Xu XH, Zou JZ, Fang Y, Ding XQ: Renal protection by delayed ischaemic preconditioning is associated with inhibition of the inflammatory response and NF-kappaB activation. Cell Biochem Funct 2007, 25:335-343.
  • [4]Chen H, Xing B, Liu X, Zhan B, Zhou J, Zhu H, Chen Z: Ischemic postconditioning inhibits apoptosis after renal ischemia/reperfusion injury in rat. Transpl Int 2008, 21:364-371.
  • [5]Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003, 285:H579-H588.
  • [6]Yuan Y, Guo Q, Ye Z, Pingping X, Wang N, Song Z: Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res 2011, 1367:85-93.
  • [7]Sun K, Liu ZS, Sun Q: Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning. World J Gastroenterol 2004, 10:1934-1938.
  • [8]Liu X, Chen H, Zhan B, Xing B, Zhou J, Zhu H, Chen Z: Attenuation of reperfusion injury by renal ischemic postconditioning: The role of NO. Biochem Biophys Res Commun 2007, 359:628-634.
  • [9]Eldaif SM, Deneve JA, Wang NP, Jiang R, Mosunjac M, Mutrie CJ, Guyton RA, Zhao ZQ, Vinten-Johansen J: Attenuation of renal ischemia-reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transpl Int 2009, 23:217-226.
  • [10]Liu XH, Zhang ZY, Sun S, Wu XD: Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress. Shock 2008, 30:422-427.
  • [11]Kuznetsov G, Bush KT, Zhang PL, Nigam SK: Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc Natl Acad Sci U S A 1996, 93:8584-8589.
  • [12]Toth A, Nickson P, Mandl A, Bannister ML, Toth K, Erhardt P: Endoplasmic reticulum stress as a novel therapeutic target in heart diseases. Cardiovasc Hematol Disord Drug Targets 2007, 7:205-218.
  • [13]Dejeans N, Tajeddine N, Beck R, Verrax J, Taper H, Gailly P, Calderon PB: Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells. Biochem Pharmacol 2010, 79:1221-1230.
  • [14]Inagi R: Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp Nephrol 2009, 112:e1-e9.
  • [15]Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 2007, 13:365-376.
  • [16]Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K: ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 2008, 33:75-89.
  • [17]Khan M, Meduru S, Mostafa M, Khan S, Hideg K, Kuppusamy P: Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogen-activated protein kinase and Akt signaling. J Pharmacol Exp Ther 2010, 333:421-429.
  • [18]Zaouali MA, Ben Mosbah I, Boncompagni E, Ben Abdennebi H, Mitjavila MT, Bartrons R, Freitas I, Rimola A, Roselló-Catafau J: Hypoxia inducible factor-1alpha accumulation in steatotic liver preservation: role of nitric oxide. World J Gastroenterol 2010, 16:3499-3509.
  • [19]Cau J, Favreau F, Tillement JP, Lerman LO, Hauet T, Goujon JM: Trimetazidine reduces early and long-term effects of experimental renal warm ischemia: a dose effect study. J Vasc Surg 2008, 47:852-860.
  • [20]Hauet T, Baumert H, Amor IB, Gibelin H, Tallineau C, Eugene M, Tillement JP, Carretier M: Pharmacological limitation of damage to renal medulla after cold storage and transplantation by trimetazidine. J Pharmacol Exp Ther 2000, 292:254-260.
  • [21]Baumert H, Faure JP, Zhang K, Petit I, Goujon JM, Dutheil D, Favreau F, Barrière M, Tillement JP, Mauco G, Papadopoulos V, Hauet T: Evidence for a mitochondrial impact of trimetazidine during cold ischemia and reperfusion. Pharmacology 2004, 71:25-37.
  • [22]Jayle C, Favreau F, Zhang K, Doucet C, Goujon JM, Hebrard W, Carretier M, Eugene M, Mauco G, Tillement JP, Hauet T: Comparison of protective effects of trimetazidine against experimental warm ischemia of different durations: early and long-term effects in a pig kidney model. Am J Physiol Renal Physiol 2007, 292:F1082-F1093.
  • [23]Sulikowski T, Domanski L, Ciechanowski K, Adler GZ, Pawlik A, Safranow K, Dziedziejko V, Chlubek D, Ciechanowicz A: Effect of trimetazidine on xanthine oxidoreductase expression in rat kidney with ischemia reperfusion injury. Arch Med Res 2008, 39:459-462.
  • [24]Ben Mosbah I, Casillas-Ramírez A, Xaus C, Serafín A, Roselló-Catafau J, Peralta C: Trimetazidine: is it a promising drug for use in steatotic grafts? World J Gastroenterol 2006, 12:908-914.
  • [25]Jablonski P, Howden BO, Rae DA, Birrell Birrell CS, Marshall VC, Tange J: An experimental model for assessment of renal recovery from warm ischemia. Transplantation 1983, 35:198-204.
  • [26]Chien CT, Shyue SK, Lai MK: Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 2007, 84:1183-1190.
  • [27]Chander V, Chopra K: Protective effect of nitric oxide pathway in resveratrol renal ischemia-reperfusion injury in rats. Arch Med Res 2006, 37:19-26.
  • [28]Inagi R, Kumagai T, Nishi H, Xu XH, Zou JZ, Fang Y, Ding XQ: Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol 2008, 19:915-922.
  • [29]Yeh CH, Hsu SP, Yang CC, Chien CT, Wang NP: Hypoxic preconditioning reinforces HIF-alpha-dependent HSP70 signaling to reduce ischemic renal failure-induced renal tubular apoptosis and autophagy. Life Sci 2010, 86:115-123.
  • [30]Cybulsky AV, Takano T, Papillon J, Bijian K: Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 2005, 280:24396-24403.
  • [31]Montie HL, Haezebrouck AJ, Gutwald JC, De Gracia DJ: PERK is activated differentially in peripheral organs following cardiac arrest and resuscitation. Resuscitation 2005, 66:379-389.
  • [32]Wang H, Kouri G, Wollheim CB: ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005, 118:3905-3915.
  • [33]Gao X, Fu L, Xiao M, Xu C, Sun L, Zhang T, Zheng F, Mei C: The nephroprotective effect of taurousodeoxycholic acid on ischemia /reperfusion-induced acute kidney injury by inhibiting endoplasmic reticulum stress. Basic Clin Pharmacol Toxicolin press
  • [34]Moreau VH, Castilho RF, Ferreira ST, Carvalho-Alves PC: Oxidative damage to sarcoplasmic reticulum Ca2 + −ATPase AT submicromolar iron concentrations: evidence for metal-catalyzed oxidation. Free Radic Biol Med 1998, 25:554-560.
  • [35]Kaplan P, Babusikova E, Lehotsky J, Dobrota D: Free radical-induced protein modification and inhibition of Ca2+−ATPase of cardiac sarcoplasmic reticulum. Mol Cell Biochem 2003, 248:41-47.
  • [36]Brunet S, Thibault L, Lepage G, Seidman EG, Dubé N, Levy E: Modulation of endoplasmic reticulum-bound cholesterol regulatory enzymes by iron/ascorbate-mediated lipid peroxidation. Free Radic Biol Med 2000, 28:46-54.
  • [37]Kantor PF, Lucien A, Kozak R, Lopaschuk GD: The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 2000, 86:580-588.
  • [38]Guarnieri C, Muscari C: Effect of trimetazidine on mitochondrial function and oxidative damage during reperfusion of ischemic hypertrophied rat myocardium. Pharmacology 1993, 46:324-331.
  • [39]Morin D, Hauet T, Spedding M, Tillement J: Mitochondria as target for antiischemic drugs. Adv Drug Deliv Rev 2001, 49:151-174.
  • [40]Domanski L, Sulikowski T, Safranow K, Pawlik A, Olszewska M, Chlubek D, Urasinska E, Ciechanowski K: Effect of trimetazidine on the nucleotide profile in rat kidney with ischemia–reperfusion injury. Eur J Pharm Sci 2006, 27:320-327.
  • [41]Morin D, Elimadi A, Sapena R, Crevat A, Carrupt PA, Testa B, Tillement JP: Evidence for the existence of [3H]-trimetazidine binding sites involved in the regulation of the mitochondrial permeability transition pore. Br J Pharmacol 1998, 123:1385-1394.
  • [42]Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ: Role of glycogen synthase kinase-3 in cardioprotection. Circ Res 2009, 104:1240-1252.
  • [43]Yang YM, Han CY, Kim YJ, Kim SG: AMPK-associated signaling to bridge the gap between fuel metabolism and hepatocyte viability. World J Gastroenterol 2010, 16:3731-3742.
  文献评价指标  
  下载次数:48次 浏览次数:20次