期刊论文详细信息
European Journal of Medical Research
Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray
Feng Zhang1  Liqun Duan1  Rui He1  Xiang Xu1  Yefeng Hu1  Qichun Zhao1  Xifu Shang1  Xu Li1  Wenzhi Zhang1 
[1] Department of Orthopaedics, Anhui Provincial Hospital, No. 17, Road Lujiang, Hefei 230001, China
关键词: Osmotic stimuli;    Osmotic pressure;    Top-scoring pair;    Intervertebral disc;   
Others  :  817681
DOI  :  10.1186/2047-783X-18-62
 received in 2013-06-27, accepted in 2013-12-06,  发布年份 2013
PDF
【 摘 要 】

Background

Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method.

Methods

Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis.

Results

A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells.

Conclusions

We anticipate that our results will provide new thoughts and methods for the study of IVD disease.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140711014838354.pdf 236KB PDF download
【 参考文献 】
  • [1]Lapointe JM, Summers BA: Intervertebral disk disease with spinal cord penetration in a Yucatan pig. Vet Pathol 2012, 49:1054-1056.
  • [2]Lee KI, Moon SH, Kim H, Kwon UH, Kim HJ, Park SN, Suh H, Lee HM, Kim HS, Chun HJ, Kwon IK, Jang JW: Tissue engineering of the intervertebral disc with cultured nucleus pulposus cells using atelocollagen scaffold and growth factors. Spine (Phila Pa 1976) 2012, 37:452-458.
  • [3]Abbott RD, Purmessur D, Monsey RD, Iatridis JC: Regenerative potential of TGFbeta3 + Dex and notochordal cell conditioned media on degenerated human intervertebral disc cells. J Orthop Res 2012, 30:482-488.
  • [4]Benz K, Stippich C, Fischer L, Mohl K, Weber K, Lang J, Steffen F, Beintner B, Gaissmaier C, Mollenhauer JA: Intervertebral disc cell- and hydrogel-supported and spontaneous intervertebral disc repair in nucleotomized sheep. Eur Spine J 2012, 21:1758-1768.
  • [5]Li S, Duance VC, Blain EJ: Zonal variations in cytoskeletal element organization, mRNA and protein expression in the intervertebral disc. J Anat 2008, 213:725-732.
  • [6]Chen J, Baer AE, Paik PY, Yan W, Setton LA: Matrix protein gene expression in intervertebral disc cells subjected to altered osmolarity. Biochem Biophys Res Commun 2002, 293:932-938.
  • [7]Cheng CC, Uchiyama Y, Hiyama A, Gajghate S, Shapiro IM, Risbud MV: PI3K/AKT regulates aggrecan gene expression by modulating Sox9 expression and activity in nucleus pulposus cells of the intervertebral disc. J Cell Physiol 2009, 221:668-676.
  • [8]Wuertz K, Urban JP, Klasen J, Ignatius A, Wilke HJ, Claes L, Neidlinger-Wilke C: Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. J Orthop Res 2007, 25:1513-1522.
  • [9]Boyd LM, Richardson WJ, Chen J, Kraus VB, Tewari A, Setton LA: Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative RT-PCR. Ann Biomed Eng 2005, 33:1071-1077.
  • [10]Haschtmann D, Stoyanov JV, Ferguson SJ: Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res 2006, 24:1957-1966.
  • [11]Pritchard S, Guilak F: The role of F-actin in hypo-osmotically induced cell volume change and calcium signaling in anulus fibrosus cells. Ann Biomed Eng 2004, 32:103-111.
  • [12]Pritchard S, Erickson GR, Guilak F: Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton. Biophys J 2002, 83:2502-2510.
  • [13]Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D: Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 2005, 21:3896-3904.
  • [14]Geman D, d’Avignon C, Naiman DQ, Winslow RL: Classifying gene expression profiles from pairwise mRNA comparisons. Stat Appl Genet Mol Biol 2004, 3:19.
  • [15]Xu L, Tan AC, Naiman DQ, Geman D, Winslow RL: Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data. Bioinformatics 2005, 21:3905-3911.
  • [16]Winslow DGCdADQNRL: Classifying gene expression profiles from pairwise mRNA comparison. Stat Appl Genet Mol Biol 2004, 3:1071.
  • [17]Farinola N, Piller NB: CYP2A6 polymorphisms: is there a role for pharmacogenomics in preventing coumarin-induced hepatotoxicity in lymphedema patients? Pharmacogenomics 2007, 8:151-158.
  • [18]Altarescu G, Rachmilewitz D, Zevin S: Relationship between CYP2A6 genetic polymorphism, as a marker of nicotine metabolism, and ulcerative colitis. Isr Med Assoc J 2011, 13:87-90.
  • [19]Tamaki Y, Arai T, Sugimura H, Sasaki T, Honda M, Muroi Y, Matsubara Y, Kanno S, Ishikawa M, Hirasawa N, Hiratsuka M: Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug Metab Pharmacokinet 2011, 26:516-522.
  • [20]Krishnakumar D, Gurusamy U, Dhandapani K, Surendiran A, Baghel R, Kukreti R, Gangadhar R, Prayaga U, Manjunath S, Adithan C: Genetic polymorphisms of drug-metabolizing phase I enzymes CYP2E1, CYP2A6 and CYP3A5 in South Indian population. Fundam Clin Pharmacol 2012, 26:295-306.
  • [21]Liu H, Baliga R: Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 2005, 16:1985-1992.
  • [22]Zhou J, Vos CC, Gjyrezi A, Yoshida M, Khuri FR, Tamanoi F, Giannakakou P: The protein farnesyltransferase regulates HDAC6 activity in a microtubule-dependent manner. J Biol Chem 2009, 284:9648-9655.
  • [23]Bell IM, Gallicchio SN, Abrams M, Beese LS, Beshore DC, Bhimnathwala H, Bogusky MJ, Buser CA, Culberson JC, Davide J, Ellis-Hutchings M, Fernandes C, Gibbs JB, Graham SL, Hamilton KA, Hartman GD, Heimbrook DC, Homnick CF, Huber HE, Huff JR, Kassahun K, Koblan KS, Kohl NE, Lobell RB, Lynch JJ Jr, Robinson R, Rodrigues AD, Taylor JS, Walsh ES, Williams TM, Zartman CB: 3-Aminopyrrolidinone farnesyltransferase inhibitors: design of macrocyclic compounds with improved pharmacokinetics and excellent cell potency. J Med Chem 2002, 45:2388-2409.
  • [24]Maubaret CG, Vaclavik V, Mukhopadhyay R, Waseem NH, Churchill A, Holder GE, Moore AT, Bhattacharya SS, Webster AR: Autosomal Dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8. Invest Ophthalmol Vis Sci 2011, 52:9304-9309.
  • [25]Seilhean D, Cazeneuve C, Thuriès V, Russaouen O, Millecamps S, Salachas F, Meininger V, LeGuern E, Duyckaerts C: Accumulation of TDP-43 and α-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol 2009, 118:561-573.
  • [26]Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N, Saido TC, Kwak S: A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 2012, 3:1307.
  • [27]Smolders L: New treatment strategies for canine intervertebral disc degeneration. Utrecht: Utrecht University; 2013. [PhD Thesis]
  • [28]Dumont J, Zureik M, Bauters C, Grupposo M-C, Cottel D, Montaye M, Hamon M, Ducimetière P, Amouyel P, Brousseau T: Association of OAZ1 gene polymorphisms with subclinical and clinical vascular events. Arterioscler Thromb Vasc Biol 2007, 27:2120-2126.
  • [29]Vasta V, Ng SB, Turner EH, Shendure J, Hahn SH: Next generation sequence analysis for mitochondrial disorders. Genome Med 2009, 1:100. BioMed Central Full Text
  • [30]Jabs EW, Thomas PJ, Bernstein M, Coss C, Ferreira GC, Pedersen PL: Chromosomal localization of genes required for the terminal steps of oxidative metabolism: alpha and gamma subunits of ATP synthase and the phosphate carrier. Hum Genet 1994, 93:600-602.
  • [31]Le Visage C, Kim SW, Tateno K, Sieber AN, Kostuik JP, Leong KW: Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis. Spine (Phila Pa 1976) 2006, 31:2036-2042.
  • [32]Liu QR, Chan PK: Characterization of seven processed pseudogenes of nucleophosmin/B23 in the human genome. DNA Cell Biol 1993, 12:149-156.
  • [33]Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, Saltman DL: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1995, 267:316-317.
  • [34]Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006, 23:607-618.
  • [35]Ma Z, Kanai M, Kawamura K, Kaibuchi K, Ye K, Fukasawa K: Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol Cell Biol 2006, 26:9016-9034.
  • [36]Maggi LB Jr, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR, Pandolfi PP, Weber JD: Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol 2008, 28:7050-7065.
  • [37]Krause A, Hoffmann I: Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication. PLoS One 2010, 5:e9849.
  • [38]Gruber HE, Ingram JA, Leslie K, Hanley EN Jr: Cellular, but not matrix, immunolocalization of SPARC in the human intervertebral disc: decreasing localization with aging and disc degeneration. Spine (Phila Pa 1976) 2004, 29:2223-2228.
  • [39]Gruber HE, Ingram JA, Hanley EN Jr: Tenascin in the human intervertebral disc: alterations with aging and disc degeneration. Biotech Histochem 2002, 77:37-41.
  • [40]Ye Q, Worman HJ: Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 1996, 271:14653-14656.
  • [41]Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM: Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett 2000, 467:17-21.
  • [42]Zhu J, Gong JY, Goodman OB Jr, Cartegni L, Nanus DM, Shen R: Bombesin attenuates pre-mRNA splicing of glucocorticoid receptor by regulating the expression of serine-arginine protein p30c (SRp30c) in prostate cancer cells. Biochim Biophys Acta 2007, 1773:1087-1094.
  • [43]Mukherji M, Brill LM, Ficarro SB, Hampton GM, Schultz PG: A phosphoproteomic analysis of the ErbB2 receptor tyrosine kinase signaling pathways. Biochemistry 2006, 45:15529-15540.
  文献评价指标  
  下载次数:7次 浏览次数:45次