Cell & Bioscience | |
Human papillomavirus 18 E6 inhibits phosphorylation of p53 expressed in HeLa cells | |
Manoj K Bhat2  Avtar S Meena2  Amrendra K Ajay1  | |
[1] Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA;National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune - 411007, India | |
关键词: E6; cervical cancer; phosphorylation; p53; HPV; | |
Others : 793679 DOI : 10.1186/2045-3701-2-2 |
|
received in 2011-10-05, accepted in 2012-01-13, 发布年份 2012 | |
【 摘 要 】
Background
In HPV infected cells p53 function is abrogated by E6 and even ectopically expressed p53 is unable to perform tumor suppressor functions. In addition to facilitating its degradation, E6 may also inhibit p53 transactivity, though the mechanisms are still poorly understood. It has been reported that inhibition of p300, an acetyltransferase responsible for p53 acetylation is inactivated by E6. Activation of overexpressed p53 to cause cell growth inhibition is facilitated by its phosphorylation. Previously, we reported that non-genotoxically overexpressed p53 in HeLa cells needs to be phosphorylated to perform its cell growth inhibitory functions. Since over expressed p53 by itself was not activated, we hypothesized an inhibitory role for E6.
Results
Majority of reports proposes E6 mediated degradation of p53 as a possible reason for its inactivation. However, results presented here for the first time demonstrate that overexpressed p53 is not directly associated with E6 and therefore free, yet it is not functionally active in HPV positive cells. Also, the stability of overexpressed p53 does not seem to be an issue because inhibition of proteasomal degradation did not increase the half-life of overexpressed p53, which is more than endogenous p53. However, inhibition of proteasomal degradation prevents the degradation of endogenous p53. These findings suggest that overexpressed p53 and endogenous p53 are differentially subjected to proteasomal degradation and the reasons for this discrepancy remain unclear. Our studies demonstrate that p53 over expression has no effect on anchorage independent cell-growth and E6 nullifies its cell growth inhibitory effect. E6 overexpression abrogates OA induced p53 occupancy on the p21 promoter and cell death as well. E6 did not decrease p53 protein but phospho-p53 level was significantly reduced.
Conclusion
We report for the first time that E6 de-activates p53 by inhibiting its phosphorylation. This prevents p53 binding to p21 promoter and thereby restraining its cell-growth inhibitory functions. Our study provides new evidence indicating that viral protein E6 inhibits p53 transactivity by mechanism independent of degradation pathway.
【 授权许可】
2012 Ajay et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705054224523.pdf | 2418KB | download | |
Figure 7. | 27KB | Image | download |
Figure 6. | 36KB | Image | download |
Figure 5. | 41KB | Image | download |
Figure 4. | 31KB | Image | download |
Figure 3. | 47KB | Image | download |
Figure 2. | 26KB | Image | download |
Figure 1. | 30KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N: Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999, 189:12-19.
- [2]Franceschi S, Munoz N, Bosch XF, Snijders PJ, Walboomers JM: Human papillomavirus and cancers of the upper aerodigestive tract: a review of epidemiological and experimental evidence. Cancer Epidemiol Biomarkers Prev 1996, 5:567-575.
- [3]Brandwein M, Zeitlin J, Nuovo GJ, MacConnell P, Bodian C, Urken M, Biller H: HPV detection using "hot start" polymerase chain reaction in patients with oral cancer: a clinicopathological study of 64 patients. Mod Pathol 1994, 7:720-727.
- [4]Fouret P, Monceaux G, Temam S, Lacourreye L, St Guily JL: Human papillomavirus in head and neck squamous cell carcinomas in nonsmokers. Arch Otolaryngol Head Neck Surg 1997, 123:513-516.
- [5]Gillison ML, Koch WM, Shah KV: Human papillomavirus in head and neck squamous cell carcinoma: are some head and neck cancers a sexually transmitted disease? Curr Opin Oncol 1999, 11:191-199.
- [6]Snijders PJ, Scholes AG, Hart CA, Jones AS, Vaughan ED, Woolgar JA, Meijer CJ, Walboomers JM, Field JK: Prevalence of mucosotropic human papillomaviruses in squamous-cell carcinoma of the head and neck. Int J Cancer 1996, 66:464-469.
- [7]Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, Zahurak ML, Daniel RW, Viglione M, Symer DE, Shah KV, Sidransky D: Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000, 92:709-720.
- [8]Gillison ML, Shah KV: Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol 2001, 13:183-188.
- [9]Paz IB, Cook N, Odom-Maryon T, Xie Y, Wilczynski SP: Human papillomavirus (HPV) in head and neck cancer. An association of HPV 16 with squamous cell carcinoma of Waldeyer's tonsillar ring. Cancer 1997, 79:595-604.
- [10]Pintos J, Franco EL, Black MJ, Bergeron J, Arella M: Human papillomavirus and prognoses of patients with cancers of the upper aerodigestive tract. Cancer 1999, 85:1903-1909.
- [11]Coutlee F, Rouleau D, Petignat P, Ghattas G, Kornegay JR, Schlag P, Boyle S, Hankins C, Vezina S, Cote P, Macleod J, Voyer H, Forest P, Walmsley S, Franco E: Enhanced detection and typing of human papillomavirus (HPV) DNA in anogenital samples with PGMY primers and the linear array HPV genotyping test. J Clin Microbiol 2006, 44:1998-2006.
- [12]Heideman DA, Waterboer T, Pawlita M, Delis-van DP, Nindl I, Leijte JA, Bonfrer JM, Horenblas S, Meijer CJ, Snijders PJ: Human papillomavirus-16 is the predominant type etiologically involved in penile squamous cell carcinoma. J Clin Oncol 2007, 25:4550-4556.
- [13]Parkin DM, Bray F: Chapter 2: The burden of HPV-related cancers. Vaccine 2006, 24(Suppl 3):S11-S25.
- [14]Rubin MA, Kleter B, Zhou M, Ayala G, Cubilla AL, Quint WG, Pirog EC: Detection and typing of human papillomavirus DNA in penile carcinoma: evidence for multiple independent pathways of penile carcinogenesis. Am J Pathol 2001, 159:1211-1218.
- [15]Bischof O, Nacerddine K, Dejean A: Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol 2005, 25:1013-1024.
- [16]Boyer SN, Wazer DE, Band V: E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 1996, 56:4620-4624.
- [17]Scheffner M, Huibregtse JM, Vierstra RD, Howley PM: The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993, 75:495-505.
- [18]Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990, 63:1129-1136.
- [19]Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT: HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989, 8:3905-3910.
- [20]Heck DV, Yee CL, Howley PM, Munger K: Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci USA 1992, 89:4442-4446.
- [21]Toussaint-Smith E, Donner DB, Roman A: Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 2004, 23:2988-2995.
- [22]Camus S, Menendez S, Cheok CF, Stevenson LF, Lain S, Lane DP: Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene 2007, 26:4059-4070.
- [23]Thomas MC, Chiang CM: E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 2005, 17:251-264.
- [24]Patel D, Huang SM, Baglia LA, McCance DJ: The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 1999, 18:5061-5072.
- [25]Zimmermann H, Degenkolbe R, Bernard HU, O'Connor MJ: The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 1999, 73:6209-6219.
- [26]Vogt M, Butz K, Dymalla S, Semzow J, Hoppe-Seyler F: Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein. Oncogene 2006, 25:4009-4015.
- [27]Bousarghin L, Touze A, Gaud G, Iochmann S, Alvarez E, Reverdiau P, Gaitan J, Jourdan ML, Sizaret PY, Coursaget PL: Inhibition of cervical cancer cell growth by human papillomavirus virus-like particles packaged with human papillomavirus oncoprotein short hairpin RNAs. Mol Cancer Ther 2009, 8:357-365.
- [28]Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F: siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003, 22:5938-5945.
- [29]Jonson AL, Rogers LM, Ramakrishnan S, Downs LS Jr: Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecol Oncol 2008, 111:356-364.
- [30]Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science 2002, 298:1912-1934.
- [31]Barford D: Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 1996, 21:407-412.
- [32]Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD: ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet 1998, 19:175-178.
- [33]Milczarek GJ, Chen W, Gupta A, Martinez JD, Bowden GT: Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53. Carcinogenesis 1999, 20:1043-1048.
- [34]Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, Lees-Miller SP, Khanna KK: Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 2004, 23:4451-4461.
- [35]Ajay AK, Upadhyay AK, Singh S, Vijayakumar MV, Kumari R, Pandey V, Boppana R, Bhat MK: Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression. Mol Cancer 2010, 9:204-219. BioMed Central Full Text
- [36]Zhang G, Sun L, Li Z, Si L, Song T, Huang C, Zhang W: HPV-16E6 can induce multiple site phosphorylation of p53. Oncol Rep 2009, 21:371-377.
- [37]Mi J, Bolesta E, Brautigan DL, Larner JM: PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther 2009, 8:135-140.
- [38]Akutsu N, Shirasawa H, Asano T, Isono K, Simizu B: p53-Dependent and -independent transactivation by the E6 protein of human papillomavirus type 16. J Gen Virol 1996, 77:459-463.
- [39]Crook T, Fisher C, Masterson PJ, Vousden KH: Modulation of transcriptional regulatory properties of p53 by HPV E6. Oncogene 1994, 9:1225-1230.
- [40]Eichten A, Westfall M, Pietenpol JA, Munger K: Stabilization and functional impairment of the tumor suppressor p53 by the human papillomavirus type 16 E7 oncoprotein. Virology 2002, 295:74-85.
- [41]Cooper B, Schneider S, Bohl J, Jiang Y, Beaudet A, Vande PS: Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology 2003, 306:87-99.
- [42]Jin Z, Wallace L, Harper SQ, Yang J: PP2A:B56, a Substrate of Caspase-3, Regulates p53-dependent and p53-independent Apoptosis during Development. J Biol Chem 2010, 285:34493-34502.
- [43]Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G: Restoration of the tumor suppressor function to mutant p53by a low-molecular-weight compound. Nat Med 2002, 8:282-288.
- [44]Singh S, Upadhyay AK, Ajay AK, Bhat MK: p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: a novel target of p53 in apoptosis. FEBS Lett 2007, 581:289-295.