期刊论文详细信息
Experimental & Translational Stroke Medicine
Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model
Holger Braun1  Cornelia Garz2  Celine Zoe Bueche2  Stefanie Schreiber1 
[1] German Center for Neurodegenerative Diseases (DZNE), Brenneckestrasse 6, Magdeburg, 39118, Germany;Department of Neurology, Otto-von-Guericke-University, Leipziger Strasse 44, Magdeburg, 39120, Germany
关键词: SHRSP;    Cerebral small vessel disease;    Cerebral microbleeds;    Blood brain barrier;    Animal model;   
Others  :  861636
DOI  :  10.1186/2040-7378-5-4
 received in 2013-02-17, accepted in 2013-03-05,  发布年份 2013
PDF
【 摘 要 】

Cerebral small vessel disease (CSVD, cerebral microangiopathy) leads to dementia and stroke-like symptoms. Lacunes, white matter lesions (WML) and microbleeds are the main pathological correlates depicted in in-vivo imaging diagnostics. Early studies described segmental arterial wall disorganizations of small penetrating cerebral arteries as the most pronounced underlying histopathology of lacunes. Luminal narrowing caused by arteriolosclerosis was supposed to result in hypoperfusion with WML and infarcts.

We have used the model of spontaneously hypertensive stroke-prone rats (SHRSP) for a longitudinal study to elucidate early histological changes in small cerebral vessels. We suggest that endothelial injuries lead to multiple sites with blood brain barrier (BBB) leakage which cause an ongoing damage of the vessel wall and finally resulting in vessel ruptures and microbleeds. These microbleeds together with reactive small vessel occlusions induce overt cystic infarcts of the surrounding parenchyma. Thus, multiple endothelial leakage sites seem to be the starting point of cerebral microangiopathy. The vascular system reacts with an activated coagulatory state to these early endothelial injuries and by this induces the formation of stases, accumulations of erythrocytes, which represent the earliest detectable histological peculiarity of small vessel disease in SHRSP.

In this review we focus on the meaning of the BBB breakdown in CSVD and finally discuss possible consequences for clinicians.

【 授权许可】

   
2013 Schreiber et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725002929332.pdf 2947KB PDF download
203KB Image download
181KB Image download
【 图 表 】

【 参考文献 】
  • [1]Fisher CM: The arterial lesions underlying lacunes. Acta Neuropathol 1968, 12:1-15.
  • [2]Lammie GA: Pathology of small vessel stroke. Br Med Bull 2000, 56:296-306.
  • [3]Wardlaw JM, Sandercock PA, Dennis MS, Starr J: Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003, 34:806-812.
  • [4]Grinberg LT, Thal DR: Vascular pathology in the aged human brain. Acta Neuropathol 2010, 119:277-290.
  • [5]Schreiber S, Bueche CZ, Garz C, Kropf S, Angenstein F, Goldschmidt J, Neumann J, Heinze HJ, Goertler M, Reymann KG: The pathologic cascade of cerebrovascular lesions in SHRSP: is erythrocyte accumulation an early phase? J Cereb Blood Flow Metab 2012, 32:278-290.
  • [6]Weller RO, Boche D, Nicoll JAR: Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol 2009, 118:87-102.
  • [7]Weller RO, Preston SD, Subash M, Carare RO: Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimer’s Res Ther 2009, 1(2):6. BioMed Central Full Text
  • [8]Lammie GA, Brannan F, Slattery J, Warlow C: Nonhypertensive cerebral small-vessel disease. An autopsy study. Stroke 1997, 28:2222-2229.
  • [9]Bailey EL, McCulloch J, Sudlow C, Wardlaw JM: Potential animal models of lacunar stroke: a systematic review. Stroke 2009, 40:e451-e458.
  • [10]Hainsworth AH, Markus HS: Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab 2008, 28:1877-1891.
  • [11]Okamoto K, Yamori Y, Nagaoka A: Establishment of the stroke-prone spontaneously hypertensive rat (SHR). Circ Res 1974, 34 and 35(Suppl. 1):143-153.
  • [12]Yamori Y, Horie R, Handa H, Sato M, Fukase M: Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 1976, 7:46-53.
  • [13]Yamori Y, Horie R: Developmental course of hypertension and regional cerebral blood flow in stroke-prone spontaneously hypertensive rats. Stroke 1977, 8:456-461.
  • [14]Obata J, Nakamura T, Takano H, Naito A, Kimura H, Yoshida Y, Shimizu F, Guo DF, Inagami T: Increased gene expression of components of the renin-angiotensin system in glomeruli of genetically hypertensive rats. J Hypertens 2000, 18:1247-1255.
  • [15]Inagami T, Murakami T, Higuchi K, Nakajo S: Role of vascular wall renin: intracellular and extracellular mechanism. Blood Vessels 1991, 28:217-223.
  • [16]Savage P, Jeng AY: Upregulation of endothelin-1 binding in tissues of salt-loaded stroke-prone spontaneously hypertensive rats. Can J Physiol Pharmacol 2002, 80:470-474.
  • [17]Judy WV, Watanabe AM, Henry DP, Besch HR Jr, Murphy WR, Hockel GM: Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat. Circ Res 1976, 38:21-29.
  • [18]McGiff JC, Quilley CP: The rat with spontaneous genetic hypertension is not a suitable model of human essential hypertension. Circ Res 1981, 48:455-464.
  • [19]Guerrini U, Sironi L, Tremoli E, Cimino M, Pollo B, Calvio AM, Paoletti R, Asdente M: New insights into brain damage in stroke-prone rats: a nuclear magnetic imaging study. Stroke 2002, 33:825-830.
  • [20]Henning EC, Warach S, Spatz M: Hypertension-induced vascular remodeling contributes to reduced cerebral perfusion and the development of spontaneous stroke in aged SHRSP rats. J Cereb Blood Flow Metab 2010, 30:827-836.
  • [21]Fredriksson K, Auer RN, Kalimo H, Nordborg C, Olsson Y, Johansson BB: Cerebrovascular lesions in stroke-prone spontaneously hypertensive rats. Acta Neuropathol 1985, 68:284-294.
  • [22]Fredriksson K, Kalimo H, Nordborg C, Johansson BB, Olsson Y: Nerve cell injury in the brain of stroke-prone spontaneously hypertensive rats. Acta Neuropathol 1988, 76:227-237.
  • [23]Mies G, Hermann D, Ganten U, Hossmann KA: Hemodynamics and metabolism in stroke-prone spontaneously hypertensive rats before manifestation of brain infarcts. J Cereb Blood Flow Metab 1999, 19:1238-1246.
  • [24]Swislocki A, Tsuzuki A: Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat. Am J Med Sci 1993, 306:282-286.
  • [25]Braun H, Bueche CZ, Garz C, Oldag A, Heinze HJ, Goertler M, Reymann KG, Schreiber S: Stases are associated with blood–brain barrier damage and a restricted activation of coagulation in SHRSP. J Neurol Sci 2012, 322:71-76.
  • [26]Schreiber S, Bueche CZ, Garz C, Kropf S, Kuester D, Amann K, Heinze HJ, Goertler M, Reymann KG, Braun H: Kidney pathology precedes and predicts the pathological cascade of cerebrovascular lesions in stroke prone rats. PloS One 2011, 6:e26287.
  • [27]Hoffmann A, Bredno J, Wendland MF, Derugin N, Hom J, Schuster T, Su H, Ohara PT, Young WL, Wintermark M: Validation of in vivo magnetic resonance imaging blood–brain barrier permeability measurements by comparison with gold standard histology. Stroke 2011, 42:2054-2060.
  • [28]Aoki T, Sumii T, Mori T, Wang X, Lo EH: Blood–brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 2002, 33:2711-2717.
  • [29]Henning EC, Latour LL, Hallenbeck JM, Warach S: Reperfusion-associated hemorrhagic transformation in SHR rats: evidence of symptomatic parenchymal hematoma. Stroke 2008, 39:3405-3410.
  • [30]Neumann-Haefelin C, Brinker G, Uhlenkuken U, Pillekamp F, Hossmann KA, Hoehn M: Prediction of hemorrhagic transformation after thrombolytic therapy of clot embolism: an MRI investigation in rat brain. Stroke 2002, 33:1392-1398.
  • [31]Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T: Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 2009, 15:1031-1037.
  • [32]Al Sarraf H, Philip L: Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat. Brain Res 2003, 975:179-188.
  • [33]Al Sarraf H, Philip L: Increased brain uptake and CSF clearance of 14C-glutamate in spontaneously hypertensive rats. Brain Res 2003, 994:181-187.
  • [34]Gonzalez-Marrero I, Castaneyra-Ruiz L, Gonzalez-Toledo JM, Castaneyra-Ruiz A, Paz-Carmona H, Castro R, Hernandez-Fernaud JR, Castaneyra-Perdomo A, Carmona-Calero EM: High blood pressure effects on the blood to cerebrospinal fluid barrier and cerebrospinal fluid protein composition: a two-dimensional electrophoresis study in spontaneously hypertensive rats. Int J Hypertens 2013, 2013:164653.
  • [35]Tomassoni D, Bramanti V, Amenta F: Expression of aquaporins 1 and 4 in the brain of spontaneously hypertensive rats. Brain Res 2010, 1325:155-163.
  • [36]Ueno M, Sakamoto H, Tomimoto H, Akiguchi I, Onodera M, Huang CL, Kanenishi K: Blood–brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Acta Neuropathol 2004, 107:532-538.
  • [37]Ueno M, Sakamoto H, Liao YJ, Onodera M, Huang CL, Miyanaka H, Nakagawa T: Blood–brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem Cell Biol 2004, 122:131-137.
  • [38]Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, Hsu CY, Vo KD, Lin W: Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke 2007, 38:3289-3291.
  • [39]van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA: Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 2007, 212:209-217.
  • [40]Klohs J, Baltes C, Princz-Kranz F, Ratering D, Nitsch RM, Knuesel I, Rudin M: Contrast-Enhanced Magnetic Resonance Microangiography Reveals Remodeling of the Cerebral Microvasculature in Transgenic ArcAbeta Mice. J Neurosci 2012, 32:1705-1713.
  文献评价指标  
  下载次数:19次 浏览次数:1次