期刊论文详细信息
BMC Veterinary Research
Heterogeneity in the prevalence and intensity of bovine trypanosomiasis in the districts of Amuru and Nwoya, Northern Uganda
Robert A. Skilton1  Moses N. Njahira1  Geoffrey M. Malinga3  Richard Echodu2  Robert Opiro2  Joseph Okello-Onen2  Elizabeth A. Opiyo2  Jack H. P. Nyeko2  Harriet Angwech2 
[1] Biosciences Eastern and Central Africa (BecA), International Livestock Research Institute (ILRI) - Hub, Old Naivasha Road, Nairobi, Kenya;Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda;Department of Biology, University of Eastern Finland, Joensuu, 80101, Finland
关键词: Trypanosomiasis;    T. vivax;    T. congolense;    T. brucei s.l;    Risk factors;    ITS-PCR;    Cattle;   
Others  :  1228778
DOI  :  10.1186/s12917-015-0567-6
 received in 2014-09-30, accepted in 2015-09-30,  发布年份 2015
PDF
【 摘 要 】

Background

Livestock trypanosomiasis, transmitted mainly by tsetse flies of the genus Glossina is a major constraint to livestock health and productivity in the sub-Saharan Africa. Knowledge of the prevalence and intensity of trypanosomiasis is important in understanding the epidemiology of the disease. The objectives of this study were to (a) assess the prevalence and intensity of trypanosome infections in cattle, and (b) to investigate the reasons for the heterogeneity of the disease in the tsetse infested districts of Amuru and Nwoya, northern Uganda.

Methods

A cross-sectional study was conducted from September, 2011 to January, 2012. Blood samples were collected from 816 cattle following jugular vein puncture, and screened for trypanosomes by HCT and ITS-PCR. A Pearson chi-squared test and logistic regression analyses were performed to determine the association between location, age, sex, and prevalence of trypanosome infections.

Results

Out of the 816 blood samples examined, 178 (22 %) and 338 (41 %) tested positive for trypanosomiasis by HCT and ITS-PCR, respectively. Trypanosoma vivax infection accounted for 77 % of infections detected by ITS-PCR, T. congolense (16 %), T. brucei s.l (4 %) and mixed (T. vivax/ T. congolense/T.brucei) infections (3 %). The risk of trypanosome infection was significantly associated with cattle age (χ 2= 220.4, df = 3, P < 0.001). The highest proportions of infected animals were adult males (26.7 %) and the least infected were the less than one year old calves (2.0 %). In addition, the risk of trypanosome infection was significantly associated with sex (χ 2  = 16.64, df = 1, P < 0.001), and males had a significantly higher prevalence of infections (26.8 %) than females (14.6 %).

Conclusion

Our results indicate that the prevalence and intensity of trypanosome infections are highly heterogeneous being associated with cattle age, location and sex.

【 授权许可】

   
2015 Angwech et al.

【 预 览 】
附件列表
Files Size Format View
20151019031241230.pdf 1331KB PDF download
Fig. 2. 16KB Image download
Fig. 1. 136KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Ford LB. Civil conflict and sleeping sickness in Africa in general and Uganda in particular. Confl Health. 2007; 1:6. BioMed Central Full Text
  • [2]Aksoy S. Control of tsetse flies and trypanosomes using molecular genetics. Vet Parasitol. 2003; 115:125-145.
  • [3]Schofield CJ, Kabayo JP. Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors. 2008; 1:24. BioMed Central Full Text
  • [4]Picozzi K, Fevre EM, Odiit M, Carrington M, Eisler MC, Maudlin I et al.. Sleeping sickness in Uganda: a thin line between two fatal diseases. BMJ. 2005; 331:1238-1241.
  • [5]Kelly DW. Why are some people bitten more than others? Trends Parasitol. 2001; 17:578-581.
  • [6]Simukoko H, Marcotty T, Phiri I, Geysen D, Vercruysse J, Van den Bossche P. Heterogeneity in the trypanosomosis incidence of Zebu cattle of different ages and sex on the plateau of Eastern Zambia. Acta Trop. 2007; 103:98-101.
  • [7]Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Soldan VP, Kochel TJ, Kitron U et al.. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis. 2009; 3:481.
  • [8]Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP et al.. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci. 1997; 94:338-342.
  • [9]Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. Host heterogeneity dominates West Nile virus transmission. Proc R Soc B. 2006; 273:2327-2333.
  • [10]Lambrechts L, Knox TB, Wong J, Liebman KA, Albright RG, Stoddard ST. Shifting priorities in vector biology to improve control of vector-borne disease. Trop Med Int Health. 2009; 14:1505-1514.
  • [11]Kabayo JP. Aiming to eliminate tsetse from Africa. Trends Parasitol. 2002; 18:473-475.
  • [12]Joshua RA, Obwolo MJ, Bwangamoi O, Mandebvu E. Resistance to diminazine aceturate by Trypanosoma congolense from cattle in the Zambezi Valley of Zimbabwe. Vet Parasitol. 1995; 60:1-6.
  • [13]Delespaux V, Geysen D, Van den Bossche P, Geerts S. Molecular tools for the rapid detection of drug resistance in animal trypanosomes. Trends Parasitol. 2008; 24:236-242.
  • [14]McNeil D. Drug companies and third world: a case study in Neglect. New York Times, New York; 2000.
  • [15]Selby R, Bardosh K, Picozzi K, Waiswa C, Welburn SC. Cattle movements and Trypanosomes: restocking efforts and the spread of Trypanosoma brucei rhodesiense sleeping sickness in post-conflict Uganda. Parasit Vectors. 2013; 6:281. BioMed Central Full Text
  • [16]State of the Environment Report for Uganda. National Environment Management Authority (NEMA), Kampala; 2012.
  • [17]PAATIS. Programme Against African Trypanosomiasis: options for tsetse eradication in the moist Savannah Zone of West Africa. Technical and economic feasibility phase 1, GIS-based study. 2001:13. http://www-naweb.iaea.org/nafa/ipc/public/Tsetse-eradication-west-africa.pdf. Accessed 10 September, 2011.
  • [18]Kish L. Survey sampling. John Wiley and Sons, Inc, London: New York; 1968.
  • [19]De-Lahunta A, Hable RE. Applied veterinary anatomy. W.B. Saunders Company, USA; 1986.
  • [20]Woo PTK. The haematocrit centrifugation technique for the diagnosis of African trypanosomiasis. Acta Trop. 1970; 27:384-386.
  • [21]OIE Terrestrial Manual, Chapter 2.4.18, Trypanosomosis (tsetse-transmitted). 2008 http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.18_TRYPANOSOMOSIS.pdf. Accessed 02 September, 2011.
  • [22]The African Trypanotolerant Livestock Network. Indications from results 1983-1985. ILCA, Addis Ababa: Ethiopia; 1986.
  • [23]Desquesnes M, McLaughlin G, Zoungrana A, Dávila AM. Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. Int J Parasitol. 2001; 31:610-614.
  • [24]Desquesnes M, Ravel S, Cuny G. PCR identification of Trypanosoma lewisi, a common parasite of laboratory rats. Kinetoplastid Biol Dis. 2002; 1:2. BioMed Central Full Text
  • [25]Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RC et al.. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res. 2005; 95:186-192.
  • [26]Rowlands GJ, Woudyalew M, Authie E, d’ieteren GDM, Leak SGA, Nagda SM et al.. Epidemiology of bovine trypanosomiasis in the Ghibe valley, southwest Ethiopia. 2. Factors associated with variations in trypanosome prevalence, incidence of new infections and prevalence of recurrent infections. Acta Trop. 1993; 53:135-150.
  • [27]Magona JW, Gereiner M, Mehlitz D. Impact of tsetse control on the age-specific prevalence of trypanosomosis in village cattle in Southeast Uganda. Trop Anim Health Prod. 2000; 32:87-98.
  • [28]Alemayehu B, Bogale B, Fentahun T, Chanie M. Bovine trypanosomiasis: a threat to cattle production in Chena district. Southwest Ethiopia. Open J Anim Sci. 2012; 2:287-291.
  • [29]Biryomumaisho S, Melville SE, Katunguka-Rwakishaya E, Cailleau A, Lubega GW. Livestock trypanosomes in Uganda: Parasite heterogeneity and anaemia status of naturally infected cattle, goats and pigs. Parasitol Res. 2013; 112:1443-1450.
  • [30]Fiennes R. Pathogenesis and Pathology of Animal trypanosomiasis. In: The African Trypanosomiases. Mulligan HW, editor. Allen and Unwin, London; 1970: p.729-750.
  • [31]Torr SJ, Wangwiro TNC, Hall DR. The effect of host physiology on the attraction of tsetse (Diptera: Glossinidae) and stomoxys (Diptera: Muscidae) to cattle. Bull Ent Res. 2006; 96:71-84.
  • [32]Magona JW, Walubengo J, Odimin JT. Acute haemorrhagic syndrome of bovine trypanosomosis in Uganda. Acta Trop. 2008; 107:186-191.
  • [33]Fasanmi OG, Okoroafor UP, Nwufoh OC, Bokola-Oladele OM, Ajibola ES. Survey for Trypanosoma species in cattle from three farms in Iddo local Government Area, Oyo state. Sokoto J Vet Sci. 2014; 12:57-61.
  • [34]Magona JW, Walubengo J, Odiit M, Okedi LA, Abila P, Katabazi BK et al.. Implications of the re-invasion of Southeast Uganda by Glossina pallidipes on the epidemiology of bovine trypanosomosis. Vet Parasitol. 2005; 128:1-9.
  • [35]Moloo SK, Kutuza SB, Boreham PFL. Studies on Glossina pallidipes, G. fuscipes fuscipes and G. brevipalpis in terms of the epidemiology and epizootiology of trypanosomiasis in South-eastern Uganda. Ann Trop Med Parasitol. 1980; 74:219-237.
  • [36]Jordan AM. Recent Development in the ecology and methods of control of tsetse flies (Glossina species (Diptera: Glossinidae)): a review. Bull Entomol Res. 1974; 67:523-574.
  • [37]Waiswa C, Olaho-Mukani W, Katunguka-Rwakishaya E. Domestic animals as reservoirs for sleeping sickness in three endemic foci in south eastern Uganda. Ann Trop Med Parasitol. 2003; 97:149-155.
  • [38]Waiswa C, Picozzi K, Katunguka-Rwakishaya E, Olaho-Mukani W, Musoke RA, Welburn SC. Glossina fuscipes fuscipes in the trypanosomiasis endemic areas of south eastern Uganda: Apparent density, trypanosome infection rates and host feeding preferences. Acta Trop. 2006; 99:23-29.
  • [39]Penchenier L, Dumas V, Grébaut P, Reifemberg JM, Cuny G. Improvement of blood and fly gut processing for diagnosis of trypanosomosis. Parasite. 1996; 4:387-389.
  • [40]Thumbi SM, McOdimba FA, Mosi RO, Jung’a JO. Comparative evaluation of three PCR based diagnostic assays for the detection of pathogenic trypanosomes in cattle blood. Parasit Vectors. 2008; 1:46-50. BioMed Central Full Text
  文献评价指标  
  下载次数:32次 浏览次数:24次