期刊论文详细信息
Cell & Bioscience
Absence of Appl2 sensitizes endotoxin shock through activation of PI3K/Akt pathway
Donghai Wu1  Pentao Liu2  Aimin Xu3  Yu Wang3  Peng Li1  Xiaofeng Tang1  Mengxiao Ding1  Kuai Li1  Xuefei Gao2  Xiaoyan Hui3  Tao Nie1  Wanhua Lin4  Liufeng Mao1 
[1] Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China;Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK;State key laboratory of pharmaceutical biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China;Lab for Stem Cell and Pharmaceutical Biotechnology of Guangxi Normal University, Guilin 541004, China
关键词: NF-κB;    Akt;    PI3K;    Inflammatory cytokines;    Endotoxin shock;    Appl1;    Appl2;   
Others  :  1149225
DOI  :  10.1186/2045-3701-4-60
 received in 2014-08-10, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

The adapter proteins Appl1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif 1) and Appl2 are highly homologous and involved in several signaling pathways. While previous studies have shown that Appl1 plays a pivotal role in adiponectin signaling and insulin secretion, the physiological functions of Appl2 are largely unknown.

Results

In the present study, the role of Appl2 in sepsis shock was investigated by using Appl2 knockout (KO) mice. When challenged with lipopolysaccharides (LPS), Appl2 KO mice exhibited more severe symptoms of endotoxin shock, accompanied by increased production of proinflammatory cytokines. In comparison with the wild-type control, deletion of Appl2 led to higher levels of TNF-α and IL-1β in primary macrophages. In addition, phosphorylation of Akt and its downstream effector NF-κB was significantly enhanced. By co-immunoprecipitation, we found that Appl2 and Appl1 interacted with each other and formed a complex with PI3K regulatory subunit p85α, which is an upstream regulator of Akt. Consistent with these results, deletion of Appl1 in macrophages exhibited characteristics of reduced Akt activation and decreased the production of TNFα and IL-1β when challenged by LPS.

Conclusions

Results of the present study demonstrated that Appl2 is a critical negative regulator of innate immune response via inhibition of PI3K/Akt/NF-κB signaling pathway by forming a complex with Appl1 and PI3K.

【 授权许可】

   
2014 Mao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405032602220.pdf 1416KB PDF download
Figure 8. 88KB Image download
Figure 7. 177KB Image download
Figure 6. 68KB Image download
Figure 5. 59KB Image download
Figure 4. 47KB Image download
Figure 3. 155KB Image download
Figure 2. 56KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Martin GS, Mannino DM, Eaton S, Moss M: The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003, 348:1546-1554.
  • [2]Ulevitch RJ, Tobias PS: Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995, 13:437-457.
  • [3]May MJ, Ghosh S: Signal transduction through NF-kappa B. Immunol Today 1998, 19:80-88.
  • [4]Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U: Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 1995, 267:1485-1488.
  • [5]Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T: Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 1995, 9:1586-1597.
  • [6]DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, Ghosh S, Karin M: Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 1996, 16:1295-1304.
  • [7]Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW: Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci U S A 1995, 92:11259-11263.
  • [8]Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB: NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999, 401:82-85.
  • [9]Romashkova JA, Makarov SS: NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999, 401:86-90.
  • [10]Sizemore N, Leung S, Stark GR: Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 1999, 19:4798-4805.
  • [11]Kane LP, Shapiro VS, Stokoe D, Weiss A: Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 1999, 9:601-604.
  • [12]Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS Jr, Mayo MW: Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 2000, 20:1626-1638.
  • [13]Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY, Liu F, Dong LQ: APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 2006, 8:516-523.
  • [14]Cheng KK, Lam KS, Wang B, Xu A: Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract Res Clin Endocrinol Metab 2014, 28:3-13.
  • [15]Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, Wong C, Xu A: Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 2007, 56:1387-1394.
  • [16]Tian L, Luo N, Zhu X, Chung BH, Garvey WT, Fu Y: Adiponectin-AdipoR1/2-APPL1 signaling axis suppresses human foam cell formation: differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis 2012, 221:66-75.
  • [17]Ajuwon KM, Spurlock ME: Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol 2005, 288:R1220-R1225.
  • [18]Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000, 102:1296-1301.
  • [19]Hattori Y, Hattori S, Akimoto K, Nishikimi T, Suzuki K, Matsuoka H, Kasai K: Globular adiponectin activates nuclear factor-kappaB and activating protein-1 and enhances angiotensin II-induced proliferation in cardiac fibroblasts. Diabetes 2007, 56:804-808.
  • [20]Tang CH, Chiu YC, Tan TW, Yang RS, Fu WM: Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol 2007, 179:5483-5492.
  • [21]Hupalowska A, Pyrzynska B, Miaczynska M: APPL1 regulates basal NF-kappaB activity by stabilizing NIK. J Cell Sci 2012, 125:4090-4102.
  • [22]Park M, Wu D, Park T, Choi CS, Li RK, Cheng KK, Xu A, Sweeney G: APPL1 transgenic mice are protected from high-fat diet-induced cardiac dysfunction. Am J Physiol Endocrinol Metab 2013, 305:E795-E804.
  • [23]Tan Y, You H, Wu C, Altomare DA, Testa JR: Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem 2010, 285:6377-6389.
  • [24]Wang C, Xin X, Xiang R, Ramos FJ, Liu M, Lee HJ, Chen H, Mao X, Kikani CK, Liu F, Dong LQ: Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. J Biol Chem 2009, 284:31608-31615.
  • [25]Barbieri M, Esposito A, Angellotti E, Rizzo MR, Marfella R, Paolisso G: Association of genetic variation in adaptor protein APPL1/APPL2 loci with non-alcoholic fatty liver disease. PLoS One 2013, 8:e71391.
  • [26]Laird MH, Rhee SH, Perkins DJ, Medvedev AE, Piao W, Fenton MJ, Vogel SN: TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol 2009, 85:966-977.
  • [27]Buechler C, Wanninger J, Neumeier M: Adiponectin receptor binding proteins–recent advances in elucidating adiponectin signalling pathways. FEBS Lett 2010, 584:4280-4286.
  • [28]Ngkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA: LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Gialpha dependent PI-3kinase signalling. J Inflamm (Lond) 2012, 9:1. BioMed Central Full Text
  • [29]Schenck A, Goto-Silva L, Collinet C, Rhinn M, Giner A, Habermann B, Brand M, Zerial M: The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 2008, 133:486-497.
  • [30]Cheng KK, Zhu W, Chen B, Wang Y, Wu D, Sweeney G, Wang B, Lam KS, Xu A: The adaptor protein APPL2 inhibits insulin-stimulated glucose uptake by interacting with TBC1D1 in skeletal muscle. Diabetes 2014, 5:1939-327X.
  • [31]Akashi-Takamura S, Miyake K: Toll-like receptors (TLRs) and immune disorders. J Infect Chemother 2006, 12:233-240.
  • [32]Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K, Akira S: Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 2000, 164:3476-3479.
  • [33]Choe JY, Crain B, Wu SR, Corr M: Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 2003, 197:537-542.
  • [34]Doan HQ, Bowen KA, Jackson LA, Evers BM: Toll-like receptor 4 activation increases Akt phosphorylation in colon cancer cells. Anticancer Res 2009, 29:2473-2478.
  • [35]Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR: Identification of a chromosome 3p14.3–21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 1999, 18:4891-4898.
  • [36]Cheng KK, Lam KS, Wu D, Wang Y, Sweeney G, Hoo RL, Zhang J, Xu A: APPL1 potentiates insulin secretion in pancreatic beta cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice. Proc Natl Acad Sci U S A 2012, 109:8919-8924.
  • [37]Melton DW: Gene targeting in the mouse. Bioessays 1994, 16:633-638.
  • [38]Wilson RW, Ballantyne CM, Smith CW, Montgomery C, Bradley A, O'Brien WE, Beaudet AL: Gene targeting yields a CD18-mutant mouse for study of inflammation. J Immunol 1993, 151:1571-1578.
  • [39]Lee C, Chun J, Hwang SW, Kang SJ, Im JP, Kim JS: Enalapril inhibits nuclear factor-kappaB signaling in intestinal epithelial cells and peritoneal macrophages and attenuates experimental colitis in mice. Life Sci 2014, 95:29-39.
  文献评价指标  
  下载次数:51次 浏览次数:4次