期刊论文详细信息
Journal of Neuroinflammation
Pharmacological inhibition of MALT1 protease activity protects mice in a mouse model of multiple sclerosis
Geert van Loo2  Rudi Beyaert2  Marco Prinz1  Daniel Krappmann3  Daniel Nagel3  Annelies Demeyer2  Sofie Voet2  Jens Staal2  Peter Wieghofer1  Lynn Elton2  Conor Mc Guire2 
[1] BIOSS Centre for Biological Signaling Studies, University of Freiburg, Breisacherstrasse 64, D79106 Freiburg, Germany;Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium;Institute for Molecular Toxicology and Pharmacology, Cellular Signal Integration, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
关键词: demyelination;    mepazine;    MALT1;    experimental autoimmune encephalomyelitis;    multiple sclerosis;   
Others  :  1151340
DOI  :  10.1186/1742-2094-11-124
 received in 2014-01-23, accepted in 2014-07-08,  发布年份 2014
PDF
【 摘 要 】

Background

The paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is crucial for lymphocyte activation through signaling to the transcription factor NF-κB. Besides functioning as a scaffold signaling protein, MALT1 also acts as a cysteine protease that specifically cleaves a number of substrates and contributes to specific T cell receptor-induced gene expression. Recently, small molecule inhibitors of MALT1 proteolytic activity were identified and shown to have promising anticancer properties in subtypes of B cell lymphoma. However, information on the therapeutic potential of small compound inhibitors that target MALT1 protease activity in autoimmunity is still lacking.

Methods

The present study aimed to elucidate whether MALT1 protease inhibitors are also useful in the treatment of lymphocyte-mediated autoimmune pathologies such as multiple sclerosis (MS). For this, we studied the therapeutic potential of a recently identified inhibitor of MALT1 protease activity, the phenothiazine derivative mepazine, in the context of experimental autoimmune encephalomyelitis (EAE), the main animal model for MS.

Results

We demonstrate that administration of mepazine prophylactically or after disease onset, can attenuate EAE. Importantly, while complete absence of MALT1 affects the differentiation of regulatory T (Treg) cells in vivo, the MALT1 protease inhibitor mepazine did not affect Treg development.

Conclusions

Altogether, these data indicate that small molecule inhibitors of MALT1 not only hold great promise for the treatment of B cell lymphomas but also for autoimmune disorders such as MS.

【 授权许可】

   
2014 Mc Guire et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406063239702.pdf 1647KB PDF download
Figure 6. 62KB Image download
Figure 5. 71KB Image download
Figure 4. 64KB Image download
Figure 3. 49KB Image download
Figure 2. 96KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Trapp BD, Nave KA: Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 2008, 31:247-269.
  • [2]Mc Guire C, Volckaert T, Wolke U, Sze M, De Rycke R, Waisman A, Prinz M, Beyaert R, Pasparakis M, van Loo G: Oligodendrocyte-specific FADD deletion protects mice from autoimmune-mediated demyelination. J Immunol 2010, 185:7646-7653.
  • [3]Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J, Sun L, Chen ZJ, Marynen P, Beyaert R: T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 2008, 9:263-271.
  • [4]Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE, Guzzardi M, Decaillet C, Grau M, Dorken B, Lenz P, Lenz G, Thome M: Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci U S A 2011, 108:14596-14601.
  • [5]Rebeaud F, Hailfinger S, Posevitz-Fejfar A, Tapernoux M, Moser R, Rueda D, Gaide O, Guzzardi M, Iancu EM, Rufer N, Fasel N, Thome M: The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 2008, 9:272-281.
  • [6]Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P, Gevaert K, Beyaert R: T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 2011, 30:1742-1752.
  • [7]Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, Satoh T, Mino T, Suzuki Y, Standley DM, Tsujimura T, Rakugi H, Isaka Y, Takeuchi O, Akira S: Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 2013, 153:1036-1049.
  • [8]Duwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U, Darnay BG, Ruland J, Marynen P, Krappmann D: A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol 2009, 182:7718-7728.
  • [9]Rosebeck S, Madden L, Jin X, Gu S, Apel IJ, Appert A, Hamoudi RA, Noels H, Sagaert X, Van Loo P, Baens M, Du MQ, Lucas PC, McAllister-Lucas LM: Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 2011, 331:468-472.
  • [10]Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, De Wolf-Peeters C, Hagemeijer A, Van den Berghe H, Marynen P: The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999, 93:3601-3609.
  • [11]Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G, Raderer M, Chott A: T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003, 101:2335-2339.
  • [12]Ferch U, Kloo B, Gewies A, Pfander V, Duwel M, Peschel C, Krappmann D, Ruland J: Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2009, 206:2313-2320.
  • [13]Hailfinger S, Lenz G, Ngo V, Posvitz-Fejfar A, Rebeaud F, Guzzardi M, Penas EM, Dierlamm J, Chan WC, Staudt LM, Thome M: Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2009, 106:19946-19951.
  • [14]Fontan L, Yang C, Kabaleeswaran V, Volpon L, Osborne MJ, Beltran E, Garcia M, Cerchietti L, Shaknovich R, Yang SN, Fang F, Gascoyne RD, Martinez-Climent JA, Glickman JF, Borden K, Wu H, Melnick A: MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 2012, 22:812-824.
  • [15]Nagel D, Spranger S, Vincendeau M, Grau M, Raffegerst S, Kloo B, Hlahla D, Neuenschwander M, Peter von Kries J, Hadian K, Hadian K, Dörken B, Lenz P, Lenz G, Schendel DJ, Krappmann D: Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 2012, 22:825-837.
  • [16]Schlauderer F, Lammens K, Nagel D, Vincendeau M, Eitelhuber AC, Verhelst SH, Kling D, Chrusciel A, Ruland J, Krappmann D, Hopfner KP: Structural analysis of phenothiazine derivatives as allosteric inhibitors of the MALT1 paracaspase. Angew Chem Int Ed Engl 2013, 52:10384-10387.
  • [17]Mc Guire C, Wieghofer P, Elton L, Muylaert D, Prinz M, Beyaert R, van Loo G: Paracaspase MALT1 deficiency protects mice from autoimmune-mediated demyelination. J Immunol 2013, 190:2896-2903.
  • [18]Dann A, Poeck H, Croxford AL, Gaupp S, Kierdorf K, Knust M, Pfeifer D, Maihoefer C, Endres S, Kalinke U, Meuth SG, Wiendl H, Knobeloch KP, Akira S, Waisman A, Hartmann G, Prinz M: Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat Neurosci 2012, 15:98-106.
  • [19]Vignali DA, Collison LW, Workman CJ: How regulatory T cells work. Nat Rev Immunol 2008, 8:523-532.
  • [20]Lehmann HE, Ban TA: The history of the psychopharmacology of schizophrenia. Can J Psychiatry 1997, 42:152-162.
  • [21]Klein DF: Commentary by a clinical scientist in psychopharmacological research. J Child Adolesc Psychopharmacol 2007, 17:284-287.
  • [22]Sarwer-Foner GJ, Koranyi EK: The clinical investigation of pacatal in open psychiatric settings. Can Med Assoc J 1957, 77:450-459.
  • [23]Chakraborty BS, Midha KK, McKay G, Hawes EM, Hubbard JW, Korchinski ED, Choc MG, Robinson WT: Single dose kinetics of thioridazine and its two psychoactive metabolites in healthy humans: a dose proportionality study. J Pharm Sci 1989, 78:796-801.
  • [24]Daniel WA, Wojcikowski J: Interactions between promazine and antidepressants at the level of cellular distribution. Pharmacol Toxicol 1997, 81:259-264.
  • [25]Tsuneizumi T, Babb SM, Cohen BM: Drug distribution between blood and brain as a determinant of antipsychotic drug effects. Biol Psychiatry 1992, 32:817-824.
  • [26]Heiss WD, Hoyer J, Thalhammer G: Antipsychotic drugs and dopamine-mediated responses in Aplysia neurons. J Neural Transm 1976, 39:187-208.
  文献评价指标  
  下载次数:28次 浏览次数:7次