期刊论文详细信息
Journal of Translational Medicine
Ganglioside GD2-specific trifunctional surrogate antibody Surek demonstrates therapeutic activity in a mouse melanoma model
Horst Lindhofer2  Christine Zehetmeier1  Ivonne Suckstorff1  Susanne Wosch1  Matthias Plöscher2  Juergen Hess2  Ralph Mocikat3  Nina Eissler3  Beatrix Schäfer1  Peter Ruf4 
[1] TRION Research GmbH, Martinsried, Germany;TRION Pharma GmbH, Munich, Germany;Helmholtz-Zentrum München, Institut für Molekulare Immunologie, Munich, Germany;Department of Antibody Development, TRION Research GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
关键词: Melanoma;    Ganglioside GD2;    Trifunctional bispecific asntibody;    Immunotherapy;   
Others  :  828998
DOI  :  10.1186/1479-5876-10-219
 received in 2012-09-07, accepted in 2012-11-01,  发布年份 2012
PDF
【 摘 要 】

Background

Trifunctional bispecific antibodies (trAb) are a special class of bispecific molecules recruiting and activating T cells and accessory immune cells simultaneously at the targeted tumor. The new trAb Ektomab that targets the melanoma-associated ganglioside antigen GD2 and the signaling molecule human CD3 (hCD3) on T cells demonstrated potent T-cell activation and tumor cell destruction in vitro. However, the relatively low affinity for the GD2 antigen raised the question of its therapeutic capability. To further evaluate its efficacy in vivo it was necessary to establish a mouse model.

Methods

We generated the surrogate trAb Surek, which possesses the identical anti-GD2 binding arm as Ektomab, but targets mouse CD3 (mCD3) instead of hCD3, and evaluated its chemical and functional quality as a therapeutic antibody homologue. The therapeutic and immunizing potential of Surek was investigated using B78-D14, a B16 melanoma transfected with GD2 and GD3 synthases and showing strong GD2 surface expression. The induction of tumor-associated and autoreactive antibodies was evaluated.

Results

Despite its low affinity of approximately 107 M-1 for GD2, Surek exerted efficient tumor cell destruction in vitro at an EC50 of 70ng/ml [0.47nM]. Furthermore, Surek showed strong therapeutic efficacy in a dose-dependent manner and is superior to the parental GD2 mono-specific antibody, while the use of a control trAb with irrelevant target specificity had no effect. The therapeutic activity of Surek was strictly dependent on CD4+ and CD8+ T cells, and cured mice developed a long-term memory response against a second challenge even with GD2-negative B16 melanoma cells. Moreover, tumor protection was associated with humoral immune responses dominated by IgG2a and IgG3 tumor-reactive antibodies indicating a Th1-biased immune response. Autoreactive antibodies against the GD2 target antigen were not induced.

Conclusion

Our data suggest that Surek revealed strong tumor elimination and anti-tumor immunization capabilities. The results warrant further clinical development of the human therapeutic equivalent antibody Ektomab.

【 授权许可】

   
2012 Ruf et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140714050629214.pdf 702KB PDF download
Figure 5. 32KB Image download
Figure 4. 87KB Image download
Figure 3. 52KB Image download
Figure 1. 93KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, Livingston PO: Selection of tumor antigens as targets for immune attack using immunohistochemistry: I: Focus on gangliosides. Int J Cancer 1997, 73:42-49.
  • [2]Svennerholm L, Bostrom K, Fredman P, Jungbjer B, Lekman A, Mansson JE, Rynmark BM: Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord. Biochim Biophys Acta 1994, 1214:115-123.
  • [3]Hamilton WB, Helling F, Lloyd KO, Livingston PO: Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Int J Cancer 1993, 53:566-573.
  • [4]Mujoo K, Cheresh DA, Yang HM, Reisfeld RA: Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res 1987, 47:1098-1104.
  • [5]Grant SC, Kostakoglu L, Chris MG, Yeh SDJ, Larson SM, Finn RD, Oettgen HF, Cheung NKV: Targeting of small cell lung cancer using the anti-GD2 ganglioside monoclonal antibody 3F8: a pilot trial. Eur J Nucl Med 1996, 23:145-149.
  • [6]Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K: Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 2001, 61:4244-4252.
  • [7]Cheresh DA, Rosenberg J, Mujoo K, Hirschowitz L, Reisfeld RA: Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res 1986, 46:5112-5118.
  • [8]Navid F, Santana VM, Barfield RC: Anti-GD2 antibody therapy for GD2-expressing tumors. Curr Cancer Drug Targets 2010, 10:200-209.
  • [9]Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, et al.: Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010, 363:1324-1334.
  • [10]King DM, Albertini MR, Schalch H, Hank JA, Gan J, Surfus J, Mahvi D, Schiller JH, Warner T, Kim K, Eickhoff J, Kendra K, Reisfeld R, Gillies SD, Sondel P: Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol 2004, 22:4463-4473.
  • [11]Saleh MN, Khazaeli MB, Wheeler RH, Dropcho E, Liu T, Urist M, Miller DM, Lawson S, Dixon P, Russell CH: Phase I trial of the murine monoclonal anti-GD2 antibody 14G2a in metastatic melanoma. Cancer Res 1992, 52:4342-4347.
  • [12]Yvon E, Del VM, Savoldo B, Hoyos V, Dutour A, Anichini A, Dotti G, Brenner MK: Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res 2009, 15:5852-5860.
  • [13]Lindhofer H, Hess J, Ruf P: Trifunctional Triomab® antibodies for cancer therapy. In Bispecific Antibodies. Edited by Kontermann RE. Berlin, Heidelberg, Germany: Springer; 2011:289-312.
  • [14]Chelius D, Ruf P, Gruber P, Ploscher M, Liedtke R, Gansberger E, Hess J, Wasiliu M, Lindhofer H: Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010, 2:309-319.
  • [15]Zeidler R, Reisbach G, Wollenberg B, Lang S, Chaubal S, Schmitt B, Lindhofer H: Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol 1999, 163:1246-1252.
  • [16]Ruf P, Gires O, Jager M, Fellinger K, Atz J, Lindhofer H: Characterisation of the new EpCAM-specific antibody HO-3: implications for trifunctional antibody immunotherapy of cancer. Br J Cancer 2007, 97:315-321.
  • [17]Jager M, Schoberth A, Ruf P, Hess J, Lindhofer H: The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res 2009, 69:4270-4276.
  • [18]Ruf P, Lindhofer H: Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 2001, 98:2526-2534.
  • [19]Morecki S, Lindhofer H, Yacovlev E, Gelfand Y, Slavin S: Use of trifunctional bispecific antibodies to prevent graft versus host disease induced by allogeneic lymphocytes. Blood 2006, 107:1564-1569.
  • [20]Jager M, Schoberth A, Ruf P, Hess J, Hennig M, Schmalfeldt B, Wimberger P, Strohlein M, Theissen B, Heiss MM, et al.: Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Res 2012, 72:24-32.
  • [21]Seimetz D, Lindhofer H, Bokemeyer C: Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 2010, 36:458-467.
  • [22]Ruf P, Jager M, Ellwart J, Wosch S, Kusterer E, Lindhofer H: Two new trifunctional antibodies for the therapy of human malignant melanoma. Int J Cancer 2004, 108:725-732.
  • [23]Thurin J, Thurin M, Herlyn M, Elder DE, Steplewski Z, Clark WH Jr, Koprowski H: GD2 ganglioside biosynthesis is a distinct biochemical event in human melanoma tumor progression. FEBS Lett 1986, 208:17-22.
  • [24]Miescher GC, Schreyer M, MacDonald HR: Production and characterization of a rat monoclonal antibody against the murine CD3 molecular complex. Immunol Lett 1989, 23:113-118.
  • [25]Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H, Furukawa K: Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci U S A 1994, 91:10455-10459.
  • [26]Mujoo K, Kipps TJ, Yang HM, Cheresh DA, Wargalla U, Sander DJ, Reisfeld RA: Functional properties and effect on growth suppression of human neuroblastoma tumors by isotype switch variants of monoclonal antiganglioside GD2 antibody 14.18. Cancer Res 1989, 49:2857-2861.
  • [27]Iliopoulos D, Ernst C, Steplewski Z, Jambrosic JA, Rodeck U, Herlyn M, Clark WH Jr, Koprowski H, Herlyn D: Inhibition of metastases of a human melanoma xenograft by monoclonal antibody to the GD2/GD3 gangliosides. J Natl Cancer Inst 1989, 81:440-444.
  • [28]Imai M, Landen C, Ohta R, Cheung NK, Tomlinson S: Complement-mediated mechanisms in anti-GD2 monoclonal antibody therapy of murine metastatic cancer. Cancer Res 2005, 65:10562-10568.
  • [29]Morecki S, Lindhofer H, Yacovlev E, Gelfand Y, Ruf P, Slavin S: Induction of long-lasting antitumor immunity by concomitant cell therapy with allogeneic lymphocytes and trifunctional bispecific antibody. Exp Hematol 2008, 36:997-1003.
  • [30]Holmes D: Buy buy bispecific antibodies. Nat Rev Drug Discov 2011, 10:798-800.
  • [31]Yuki N, Yamada M, Tagawa Y, Takahashi H, Handa S: Pathogenesis of the neurotoxicity caused by anti-GD2 antibody therapy. J Neurol Sci 1997, 149:127-130.
  • [32]Cheung NK, Lazarus H, Miraldi FD, Abramowsky CR, Kallick S, Saarinen UM, Spitzer T, Strandjord SE, Coccia PF, Berger NA: Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol 1987, 5:1430-1440.
  • [33]Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maries JM, Sondel PM: Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010, 363:1324-1334.
  • [34]Kushner BH, Kramer K, Modak S, Cheung NK: Successful multifold dose escalation of anti-GD2 monoclonal antibody 3F8 in patients with neuroblastoma: a phase I study. J Clin Oncol 2011, 29:1168-1174.
  • [35]Thurin J, Thurin M, Kimoto Y, Herlyn M, Lubeck MD, Elder DE, Smereczynska M, Karlsson KA, Clark WM Jr, Steplewski Z: Monoclonal antibody-defined correlations in melanoma between levels of GD2 and GD3 antigens and antibody-mediated cytotoxicity. Cancer Res 1987, 47:1229-1233.
  • [36]Münz M, Murr A, Kvesik M, Rau D, Mangold S, Pflanz S, Lumsden J, Volkland J, Fagerberg J, Riethmüller G, Rüttinger D, Kufer P, Bäuerle PA, Raum T: Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell International 2010, 10:44. BioMed Central Full Text
  • [37]Hess J, Ruf P, Lindhofer H: Cancer therapy with trifunctional antibodies: linking innate and adaptive immunity. Future Oncol 2012, 8:73-85.
  • [38]Strohlein MA, Siegel R, Jager M, Lindhofer H, Jauch KW, Heiss MM: Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis. J Exp Clin Cancer Res 2009, 28:18. BioMed Central Full Text
  • [39]Germann T, Bongartz M, Dlugonska H, Hess H, Schmitt E, Kolbe L, Kolsch E, Podlaski FJ, Gately MK, Rude E: Interleukin-12 profoundly up-regulates the synthesis of antigen- specific complement-fixing IgG2a, IgG2b and IgG3 antibody subclasses in vivo. Eur J Immunol 1995, 25:823-829.
  • [40]Rodolfo M, Melani C, Zilocchi C, Cappetti B, Luison E, Arioli I, Parenza M, Canevari S, Colombo MP: IgG2a induced by interleukin (IL) 12-producing tumor cell vaccines but not IgG1 induced by IL-4 vaccine is associated with the eradication of experimental metastases. Cancer Res 1998, 58:5812-5817.
  • [41]Eißler N, Ruf P, Mysliwietz J, Lindhofer H, Mocikat R: Trifunctional bispecific antibodies induce tumor-specific T cells and elicit a vaccination effect. Cancer Res 2012, 72:3958-3966.
  • [42]Patel SP, Woodman SE: Profile of ipilimumab and its role in the treatment of metastatic melanoma. Drug Des Devel Ther 2011, 5:489-495.
  • [43]Robert C, Thomas L, Bondarenko I, O'Day S, JW MD, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio , Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011, 364:2517-2526.
  文献评价指标  
  下载次数:5次 浏览次数:7次