期刊论文详细信息
Journal of Physiological Anthropology
Near-infrared photons: a non-invasive probe for studying bone blood flow regulation in humans
Lorenzo Spinelli1  Tiziano Binzoni2 
[1] Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy;Département de l’Imagerie et des Sciences de l’Information Médicale, University Hospital, Geneva, Switzerland
关键词: Biophotonics;    Near infrared light;    Blood volume regulation;    Bone neurovascular system;    Human;    Bone blood flow regulation;   
Others  :  1221127
DOI  :  10.1186/s40101-015-0066-2
 received in 2014-10-01, accepted in 2015-06-22,  发布年份 2015
PDF
【 摘 要 】

The study of bone blood flow regulation in humans has always represented a difficult task for the clinician and the researcher. Classical measurement techniques imply the presence of ionizing radiation or contrast agents, or they are slow or cannot be repeated too often in time. In the present review, we would like to give a perspective on how the optical approach might overcome some of these problems and give unique solutions to the study of bone blood flow regulation. We hope that the present contribution will encourage the scientific community to put a greater attention on this approach.

【 授权许可】

   
2015 Binzoni and Spinelli; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150727045731397.pdf 418KB PDF download
Fig. 1. 43KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Brookes M, Revell WJ. Blood supply of bone. Scientific Aspects. Springer, London; 1998.
  • [2]Dyke JP, Aaron RK. Noninvasive methods of measuring bone blood perfusion. Ann New York Acad Sci. 2010; 1192:95-102.
  • [3]Schoutens A, Arlet J, Gardeniers JWM, Hughes SPF. Bone circulation and vascularization in normal and pathological conditions. Plenum Press, New York; 1993.
  • [4]Lan SM, Wu YN, Wu PC, Sun CK, Shieh DB, Lin RM. Advances in noninvasive functional imaging of bone. Acad Radiol. 2014; 21:281-301.
  • [5]Boas DA, Pitris C, Ramanujam N. Handbook of biomedical optics. CRC Press, Taylor and Francis Group, Boca Raton, London, New York; 2011.
  • [6]Delpy DT, Cope M. Quantification in tissue near-infrared spectroscopy. Philos Trans R Soc Lond B Biol Sci. 1997; 352:649-59.
  • [7]Binzoni T, Blanchi S, Fasel JH, Bounameaux H, Hiltbrand E, Delpy D. Human tibia bone marrow blood perfusion by non-invasive near infrared spectroscopy: a new tool for studies on microgravity. Philos Trans R Soc Lond B Biol Sci. 2002; 9:183-4.
  • [8]Binzoni T, Leung T, Hollis V, Bianchi S, Fasel JH, Bounameaux H et al.. Human tibia bone marrow: defining a model for the study of haemodynamics as a function of age by near infrared spectroscopy. J Physiol Anthropol Appl Human Sci. 2003; 22:211-8.
  • [9]Klasing M, Zange J. In vivo quantitative near- infrared spectroscopy in skeletal muscle and bone during rest and isometric exercise. Proc SPIE. 2003; 5138:318-22.
  • [10]Binzoni T, Leung TS, Courvoisier C, Giust R, Tribillon G, Gharbi T et al.. Blood volume and haemoglobin oxygen content changes in human bone marrow during orthostatic stress. J Physiol Anthropol. 2006; 25:1-6.
  • [11]Aziz SM, Khambatta F, Vaithianathan T, Thomas JC, Clark JM, Marshall R. A near infrared instrument to monitor relative hemoglobin concentrations of human bone tissue in vitro and in vivo. Rev Sci Instrum. 2010; 81:043111.
  • [12]McCarthy I. Application of near infrared spectroscopy in the assessment of bone perfusion. J Bone Joint Surg Br. 2012; 94-B(Supp VIII):36.
  • [13]Khakha RS, Bloomer Z, Bain D, Nicholson G, Gall A, Ferguson-Pell M. Differences in the reactive hyperhemia response of bone in able bodied and spinal injured persons using near infrared spectroscopy. J Bone Joint Surg Br. 2006; 88-B(Supp II):305.
  • [14]Pifferi A, Torricelli A, Taroni P, Bassi A, Chikoidze E, Giambattistelli E et al.. Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies. J Biomed Opt. 2004; 9:474-80.
  • [15]Näslund J, Pettersson J, Lundeberg T, Linnarsson D, Lindberg LG. Non-invasive continuous estimation of blood flow changes in human patellar bone. Med Biol Eng Comput. 2006; 44:501-9.
  • [16]Näslund J, Waldén M, Lindberg LG. Decreased pulsatile blood flow in the patella in patellofemoral pain syndrome. Am J Sports Med. 2007; 35:1668-73.
  • [17]Mateus J, Hargens AR. Photoplethysmography for non-invasive in vivo measurement of bone hemodynamics. Physiol Meas. 2012; 33:1027-42.
  • [18]Mateus J, Hargens AR. Bone hemodynamic responses to changes in external pressure. Bone. 2013; 52:604-10.
  • [19]Näslund JE, Näslund S, Lundeberg E, Lindberg LG, Lund I. Bone blood flow is influenced by muscle contractions. J Biomed Sci Eng. 2011; 4:490-6.
  • [20]Farzam P, Zirak P, Binzoni T, Durduran T. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy. Physiol Meas. 2013; 34:839-57.
  • [21]Farzam P, Lindner C, Weigel U, Suarez M, Urbano-Ispizua A, Durduran T. Noninvasive characterization of the healthy human manubrium using diffuse optical spectroscopies. Physiol Meas. 2014; 35:1469-91.
  • [22]Binzoni T, Boggett D, Van De Ville D. Laser-doppler flowmetry at large interoptode spacing in human tibia diaphysis: Monte carlo simulations and preliminary experimental results. Physiol Meas. 2011; 32:33-53.
  • [23]Binzoni T, Tchernin D, Hyacinthe JN, Van De Ville D, Richiardi J. Pulsatile blood flow in human bone assessed by laser-doppler flowmetry and the interpretation of photoplethysmographic signals. Physiol Meas. 2013; 34:25-40.
  • [24]Binzoni T, Van De Ville D, Sanguineti B. Time domain algorithm for single-photon laser-doppler flowmetry at large interoptode spacing in human bone. Appl Opt. 2014; 53:7017-24.
  • [25]Binzoni T, Tchernin D, Richiardi J, Van De Ville D, Hyacinthe JN. Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-doppler flowmetry. Physiol Meas. 2012; 33:1181-97.
  • [26]Harrison M, Neary JP, Albert WJ, Veillette DW, McKenzie NP, Croll JC. Trapezius muscle metabolism measured with nirs in helicopter pilots flying a simulator. Aviat Space Environ Med. 2007; 78:110-6.
  • [27]Kot J. Medical equipment for multiplace hyperbaric chambers. part i: Devices for monitoring and cardiac support. Eur J Underwater Hyperb Med. 2005; 6:115-20.
  • [28]Litscher G, Schwarz G, Ratzenhofer-Komenda B, Kovac H, Gabor S, Smolle-Jüttner FM. Transcranial cerebral oximetry in the hyperbaric environment. Biomed Tech (Berl). 1997; 42:38-41.
  • [29]Zhang Q, Yan X, Strangman GE. Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy. J Biomed Opt. 2011; 16:087008.
  • [30]Schneider S, Abeln V, Askew CD, Vogt T, Hoffmann U, Denise P et al.. Changes in cerebral oxygenation during parabolic flight. Eur J Appl Physiol. 2013; 113:1617-23.
  • [31]Binzoni T, Van De Ville D. Noninvasive probing of the neurovascular system in human bone/bone marrow using near-infrared light. Innovative Opt Health Sci. 2011; 4:183-9.
  • [32]Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007; 28:1-39.
  • [33]Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Physiol Meas. 2014; 85(Pt 1):6-27.
  • [34]Durduran T, Yodh AG. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. Neuroimage. 2014; 85(Pt 1):51-63.
  • [35]Durduran T, Choe R, Baker W, Yodh AG. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys. 2010; 73:076701-44.
  • [36]Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, Spinelli L. Time domain functional nirs imaging for human brain mapping. Neuroimage. 2014; 85(Pt 1):28-50.
  • [37]Humeau A, Steenbergen W, Nilsson H, Strömberg T. Laser doppler perfusion monitoring and imaging: novel approaches. Med Biol Eng Comput. 2007; 45:421-35.
  文献评价指标  
  下载次数:25次 浏览次数:43次