期刊论文详细信息
Human Genomics
Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype
Jean-Philippe Vert1  Fabien Reyal2  Matahi Moarii1 
[1] U900, INSERM, 11-13 Rue Pierre et Marie Curie, Paris F-75248, France;Department of Surgery, Institut Curie, 26 Rue d’Ulm, Paris 75006, France
Others  :  1229103
DOI  :  10.1186/s40246-015-0048-9
 received in 2015-07-20, accepted in 2015-10-01,  发布年份 2015
【 摘 要 】

Background

The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical importance as it has been reported to be associated with prognosis or response to treatment. However, the identification of a universal molecular basis to define CIMP across tumors has remained elusive.

Results

We perform a genome-wide methylation analysis of over 2000 tumor samples from 5 cancer sites to assess the existence of a CIMP with common molecular basis across cancers. We then show that the CIMP phenotype is associated with specific gene expression variations. However, we do not find a common genetic signature in all tissues associated with CIMP.

Conclusion

Our results suggest the existence of a universal epigenetic and transcriptomic signature that defines the CIMP across several tumor types but does not indicate the existence of a common genetic signature of CIMP.

【 授权许可】

   
2015 Moarii et al.

附件列表
Files Size Format View
Fig. 4. 40KB Image download
Fig. 3. 47KB Image download
Fig. 2. 37KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Jones PA, Baylin SB: The epigenomics of cancer. Cell 2007, 128(4):683-92.
  • [2]Esteller M: Epigenetics in cancer. New Eng J Med 2008, 358(11):1148-59.
  • [3]Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17(3):330-339.
  • [4]Jones P: DNA methylation and cancer. Cancer Res 1986, 46(2):461-6.
  • [5]Baylin SB, Herman JG: DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000, 16(4):168-74.
  • [6]Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res 2001, 61(8):3225-9.
  • [7]Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa J-PJ: CpG island methylator phenotype in colorectal cancer. Proc Nat Acad Sci 1999, 96(July):8681-6.
  • [8]Issa J-PJ, Shen L, Toyota M: CIMP, at last. Gastroenterology 2005, 129(3):1121-4.
  • [9]Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse Ma, et al.: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006, 38(7):787-93.
  • [10]Estécio MRH, Yan PS, Ibrahim AEK, Tellez CS, Shen L, Huang TH-M, et al.: High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 2007, 17(10):1529-36.
  • [11]Curtin K, Slattery ML, Samowitz WS: CpG island methylation in colorectal cancer: past, present and future. Pathol Res Int 2011, 2011:902674.
  • [12]Hinoue T, Weinsenberger D, Lange C, Shen H, Byun H, Van Den Berg D, et al.: Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012, 22(2):271-82.
  • [13]Van der Auwera I, Yu W, Suo L, Van Neste L, van Dam P, Van Marck EA, et al.: Array-based DNA methylation profiling for breast cancer subtype discrimination. PloS One 2010, 5(9):e12616.
  • [14]Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LGT, et al.: Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Trans Med 2011, 3(75):75-25.
  • [15]Suzuki M, Shigematsu H, Lizasa T, Hiroshima K, Nakatani Y, Minna J, et al, Cancer. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. 2006; 106(10):2200–7.
  • [16]Chen HY, Zhu BH, Zhang CH, Yang DJ, Peng JJ, Chen JH, et al.: High CpG island methylator phenotype is associated with lymph node metastasis and prognosis in gastric cancer. Cancer Sci 2012, 103(1):73-9.
  • [17]Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al.: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17(5):510-22.
  • [18]Baysan M, Bozdag S, Cam MC, Kotliarova S, Ahn S, Walling J, et al.: G-CIMP status prediction of glioblastoma samples using mRNA expression data. PloS One 2012, 7(11):47839.
  • [19]Yilmaz E, Campos C, Fabius AWM, Lu C, Ward PS, Viale A, et al.: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483(7390):479-83.
  • [20]Bae YK, Brown A, Garrett E, Bornman D, Fackler MJ, Sukumar S, et al.: Hypermethylation in histologically distinct classes of breast cancer. Clinical Cancer Res 2004, 10(18):5998-6005.
  • [21]Anacleto C, Leopoldino A, Rossi B, Soares FA, Lopes A, Rocha JC, et al.: Colorectal cancer “methylator phenotype”: fact or artifact? Neoplasia 2005, 7(4):331-5.
  • [22]Hughes LAE, Melotte V, de Schrijver J, de Maat M, Smit VTHBM, Bovee JVMG, et al.: The CpG island methylator phenotype: what’s in a name? Cancer research 2013, 73(19):5858-68.
  • [23]Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS: CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn 2006, 8(5):582-8.
  • [24]Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, et al.: Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 2007, 104(47):18654-9.
  • [25]Monti S, Tamayo P, Mesirov J, Golub T: Consensus Clustering : A Resampling-Based Method for Class Discovery and Visualization of Gene. Machine Learning 2003, 52(1):91-118.
  • [26]Figueroa M, Abdel-Wahab O, Lu C, Ward P, Patel J, Shih A, et al.: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18(6):553-67.
  • [27]Amary M, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F: Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 2011, 43(12):1262-5.
  • [28]Pansuriya T, van Eijk R, d’Adamo P, van Ruler M, Kuijjer M, Oosting J, et al.: Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 2011, 43(12):1256-61.
  • [29]Herman J, Umar A, Polyak K, Graff J, Ahuja N, Issa J, et al.: Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 1998, 95(12):6870-5.
  • [30]Jones S, Li M, Parsons D, Zhang X, Wesseling J, Kristel P, et al.: Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 2012, 33(1):100-3.
  • [31]Zang Z, Cutcutache I, Poon S, Zhang S, McPherson J, Tao J, et al.: Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 2012, 44(5):570-4.
  • [32]Toyota M, Kopecky K, Toyota M, Jair K, Willman C, Issa J: Methylation profiling in acute myeloid leukemia. Blood 2001, 97(9):2823-9.
  • [33]Garcia-Manero G, Daniel J, Smith T, Kornblau S, Lee M, Kantarjian H, et al.: DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clinical Cancer Res 2002, 8(7):2217-24.
  • [34]Roman-Gomez J, Jimenez-Velasco A, Agirre X, Prosper F, Heiniger A, Torres A: Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol 2005, 23(28):7043-9.
  • [35]Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo J, Navarro G, Calasanz M, et al.: CpG island methylator phenotype redefines the prognostic effect of t(12;21) in childhood acute lymphoblastic leukemia. Clinical Cancer Res 2006, 12(16):4845-50.
  • [36]Maruyama R, Toyooka S, Toyooka K, Harada K, Virmani A, Zochbauer-Muller S, et al.: Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res 2001, 61(24):8659-63.
  • [37]Liu Z, Zhao J, Chen X, Li W, Liu R, Lei Z, et al.: CpG island methylator phenotype involving tumor suppressor genes located o chromosome 3p in non-small cell lung cancer. Lung Cancer 2008, 62(1):15-22.
  • [38]Maruyama R, Toyooka S, Toyooka K, Virmani A, Zochbauer-Muller S, Farinas A, et al.: Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clinical Cancer Res 2002, 8(2):514-9.
  • [39]Toyota M, Ahuja N, Suzuki H, Itoh F, Ohe-Toyota M, Imai K, et al.: Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 1999, 59:5438-42.
  • [40]Oue N, Oshimo Y, Nakayama H, Ito R, Yoshida K, Matsusaki K, et al.: DNA methylation of multiple genes in gastric carcinoma: association with histological type and CpG island methylator phenotype. Cancer Sci 2003, 94(10):901-5.
  • [41]Kim H, Kim Y, Kim S, Kim N, Noh S: Concerted promoter hypermethylation of hMLH1, p16INK4A, and E-cadherin in gastric carcinomas with microsatellite instability. J Pathol 2003, 200(1):23-31.
  • [42]Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, et al.: Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 2004, 164(2):689-99.
  • [43]Kusano M, Toyota M, Suzuki H, Akino K, Aoki F, Fujita M, et al.: Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer 2006, 106(7):1467-79.
  • [44]Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA: Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994, 368(April):753-6.
  • [45]Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al.: Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464(7291):1071-6.
  • [46]Sneddon J, Zhen H, Montgomery K, van de Rijn M, Tward A, West R, et al.: Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci USA 2006, 103(40):14842-7.
  • [47]Reddington JP, Sproul D, Meehan RR: DNA methylation reprogramming in cancer: does it act by re-configuring the binding landscape of Polycomb repressive complexes? BioEssays: News Rev Mol Cell Dev Biol 2014, 36(2):134-40.
  • [48]Pourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran H, et al.: Transcription factor Zic2 inhibits Wnt/beta-catenin protein signaling. J Biol Chem 2011, 286(43):37732-40.
  • [49]Keller L, Mortezavi A, Provenzano M, Sais G, Hermanns T, et al.: von Boehmer L: MAGE-C2/CT10 protein expression is an independent predictor of recurrence in prostate cancer. PLoS ONE 2011, 6(7):1-7.
  • [50]Yang F, Zhou X, Miao X, Zhang T, Hang X, Tie R, et al.: MAGEC2, an epithelial-mesenchymal transition inducer, is associated with breast cancer metastasis. Breast Cancer Res Treatment 2014, 145(1):23-32.
  • [51]Reinhard H, Yousef S, Luetkens T, Fehse B, Berdien B, Kröger N, et al.: Cancer-testis antigen MAGE-C2/CT10 induces spontaneous CD4+ and CD8+ T-cell responses in multiple myeloma patients. Blood Cancer J 2014, 4:e212.
  • [52]Heidecker L, Brasseur F, Probst-Kepper M, Guéguen M, Boon T, Van den Eynde BJ: Cytolytic T lymphocytes raised against a human bladder carcinoma recognize an antigen encoded by gene MAGE-A12. J Immunol (Baltimore, Md. : 1950) 2000, 164(11):6041-5.
  • [53]Mollaoglu N, Vairaktaris E, Nkenke E, Neukam FW, Ries J: Expression of MAGE-A12 in oral squamous cell carcinoma. Disease Markers 2008, 24(1):27-32.
  • [54]Peche LY, Scolz M, Ladelfa MF, Monte M, Schneider C: MageA2 restrains cellular senescence by targeting the function of PMLIV/p53 axis at the PML-NBs. Cell Death Differentiation 2012, 19(6):926-36.
  • [55]Tang H, Goldberg E: Homo sapiens lactate dehydrogenase c (Ldhc) gene expression in cancer cells is regulated by transcription factor Sp1, CREB, and CpG island methylation. J Androl 2009, 30(2):157-67.
  • [56]Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT: Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 2002, 188(1):22-32.
  • [57]Gevaert O, Tibshirani R, Plevritis SK: Pancancer analysis of DNA methylation-driven genees using MethylMix. Genome Biol 2015, 16(1):17. BioMed Central Full Text
  • [58]Gilkes DM, Semenza GL, Wirtz D: Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 2014, 141(6):430-439.
  • [59]Lu P, Weaver VM, Werb Z: The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012, 196(4):395-406.
  • [60]Bendas G, Borsig L: Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012, ID 676731:10.
  • [61]Okegawa T, Pong R, Hsieh J: The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol 2004, 51(2):445-57.
  • [62]Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al.: High density DNA methylation array with single CpG site resolution. Genomics 2011, 98(4):288-95.
  • [63]Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al.: Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009, 41(2):178-86.
  • [64]Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):1-8.
  • [65]Tibshirani R: Regression shrinkage and selection via the lasso. J R Stat Soc 1996, 58(1):267-88.
  • [66]Kaplan EL, Meier D: Nonparametric estimation from incomplete observation. J Am Statist 1958, 58:457-81.
  • [67]Cox DR, Oakes D: Analysis of Survival Data. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Taylor & Francis, London; 1984.
  文献评价指标  
  下载次数:4次 浏览次数:14次