期刊论文详细信息
Cell & Bioscience
The actinin family of actin cross-linking proteins – a genetic perspective
Paul W. Young1  Anita C.H. Murphy1 
[1] School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
关键词: Actin binding proteins;    Actin cross-linking;    ACTN4;    ACTN3;    ACTN2;    ACTN1;    Alpha-actinin;    Actinin;   
Others  :  1226109
DOI  :  10.1186/s13578-015-0029-7
 received in 2015-03-20, accepted in 2015-06-23,  发布年份 2015
PDF
【 摘 要 】

Actinins are one of the major actin cross-linking proteins found in virtually all cell types and are the ancestral proteins of a larger family that includes spectrin, dystrophin and utrophin. Invertebrates have a single actinin-encoding ACTN gene, while mammals have four. Mutations in all four human genes have now been linked to heritable diseases or traits. ACTN1 mutations cause macrothrombocytopenia, a platelet disorder characterized by excessive bleeding. ACTN2 mutations have been linked to a range of cardiomyopathies, and ACTN4 mutations cause a kidney condition called focal segmental glomerulosclerosis. Intriguingly, approximately 16 % of people worldwide are homozygous for a nonsense mutation in ACTN3 that abolishes actinin-3 protein expression. This ACTN3 null allele has undergone recent positive selection in specific human populations, which may be linked to improved endurance and adaptation to colder climates. In this review we discuss the human genetics of the ACTN gene family, as well as ACTN gene knockout studies in several model organisms. Observations from both of these areas provide insights into the evolution and cellular functions of actinins.

【 授权许可】

   
2015 Murphy and Young.

【 预 览 】
附件列表
Files Size Format View
20150923033927853.pdf 678KB PDF download
Fig. 1. 15KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Blanchard A, Ohanian V, Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil. 1989; 10(4):280-9.
  • [2]Djinovic-Carugo K, Young P, Gautel M, Saraste M. Structure of the alpha-actinin rod: molecular basis for cross-linking of actin filaments. Cell. 1999; 98(4):537-46.
  • [3]Young P, Gautel M. The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. Embo J. 2000; 19(23):6331-40.
  • [4]Ribeiro Ede A, Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J et al.. The structure and regulation of human muscle alpha-actinin. Cell. 2014; 159(6):1447-60.
  • [5]Atkinson RA, Joseph C, Kelly G, Muskett FW, Frenkiel TA, Nietlispach D et al.. Ca2 + −independent binding of an EF-hand domain to a novel motif in the alpha-actinin-titin complex. Nat Struct Biol. 2001; 8(10):853-7.
  • [6]Young P, Ferguson C, Bañuelos S, Gautel M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J. 1998; 17(6):1614-24.
  • [7]Pollard TD, Wu JQ. Understanding cytokinesis: lessons from fission yeast. Nat Rev Mol Cell Biol. 2010; 11(2):149-55.
  • [8]Virel A, Backman L. A comparative and phylogenetic analysis of the alpha-actinin rod domain. Mol Biol Evol. 2007; 24(10):2254-65.
  • [9]Baines AJ. Evolution of spectrin function in cytoskeletal and membrane networks. Biochem Soc Trans. 2009; 37(Pt 4):796-803.
  • [10]King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J et al.. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008; 451(7180):783-8.
  • [11]Jin H, Tan S, Hermanowski J, Bohm S, Pacheco S, McCauley JM et al.. The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms. BMC Genomics. 2007; 8:19.
  • [12]Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005; 436(7054):1113-8.
  • [13]Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (−to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999; 11(6):699-704.
  • [14]Lek M, MacArthur DG, Yang N, North KN. Phylogenetic analysis of gene structure and alternative splicing in alpha-actinins. Mol Biol Evol. 2010; 27(4):773-80.
  • [15]Foley KS, Young PW. An analysis of splicing, actin-binding properties, heterodimerization and molecular interactions of the non-muscle alpha-actinins. Biochem J. 2013; 452(3):477-88.
  • [16]Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem. 1992; 267(13):9281-8.
  • [17]Wyszynski M, Kharazia V, Shanghvi R, Rao A, Beggs AH, Craig AM et al.. Differential regional expression and ultrastructural localization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain. J Neurosci. 1998; 18(4):1383-92.
  • [18]Jayadev R, Kuk CY, Low SH, Murata-Hori M. Calcium sensitivity of alpha-actinin is required for equatorial actin assembly during cytokinesis. Cell Cycle. 2012; 11(10):1929-37.
  • [19]Wu JQ, Bahler J, Pringle JR. Roles of a fimbrin and an alpha-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol Biol Cell. 2001; 12(4):1061-77.
  • [20]Laporte D, Ojkic N, Vavylonis D, Wu JQ. alpha-Actinin and fimbrin cooperate with myosin II to organize actomyosin bundles during contractile-ring assembly. Mol Biol Cell. 2012; 23(16):3094-110.
  • [21]Mukhina S, Wang YL, Murata-Hori M. Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell. 2007; 13(4):554-65.
  • [22]Rivero F, Furukawa R, Fechheimer M, Noegel AA. Three actin cross-linking proteins, the 34 kDa actin-bundling protein, alpha-actinin and gelation factor (ABP-120), have both unique and redundant roles in the growth and development of Dictyostelium. J Cell Sci. 1999; 112(Pt 16):2737-51.
  • [23]Ponte E, Rivero F, Fechheimer M, Noegel A, Bozzaro S. Severe developmental defects in Dictyostelium null mutants for actin-binding proteins. Mech Dev. 2000; 91(1–2):153-61.
  • [24]Roulier EM, Fyrberg C, Fyrberg E. Perturbations of Drosophila alpha-actinin cause muscle paralysis, weakness, and atrophy but do not confer obvious nonmuscle phenotypes. J Cell Biol. 1992; 116(4):911-22.
  • [25]Fyrberg E, Kelly M, Ball E, Fyrberg C, Reedy MC. Molecular genetics of Drosophila alpha-actinin: mutant alleles disrupt Z disc integrity and muscle insertions. J Cell Biol. 1990; 110(6):1999-2011.
  • [26]Fyrberg C, Ketchum A, Ball E, Fyrberg E. Characterization of lethal Drosophila melanogaster alpha-actinin mutants. Biochem Genet. 1998; 36(9–10):299-310.
  • [27]Rui Y, Bai J, Perrimon N. Sarcomere formation occurs by the assembly of multiple latent protein complexes. PLoS Genet. 2010; 6(11):e1001208.
  • [28]Clark KA, Kadrmas JL. Drosophila melanogaster muscle LIM protein and alpha-actinin function together to stabilize muscle cytoarchitecture: a potential role for Mlp84B in actin-crosslinking. Cytoskeleton (Hoboken). 2014; 70(6):304-16.
  • [29]Moulder GL, Cremona GH, Duerr J, Stirman JN, Fields SD, Martin W et al.. alpha-actinin is required for the proper assembly of Z-disk/focal-adhesion-like structures and for efficient locomotion in Caenorhabditis elegans. J Mol Biol. 2010; 403(4):516-28.
  • [30]Foley KS, Young PW. The non-muscle functions of actinins: an update. Biochem J. 2014; 459(1):1-13.
  • [31]Kos CH, Le TC, Sinha S, Henderson JM, Kim SH, Sugimoto H et al.. Mice deficient in alpha-actinin-4 have severe glomerular disease. J Clin Invest. 2003; 111(11):1683-90.
  • [32]MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N et al.. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 2008; 17(8):1076-86.
  • [33]Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton. 2004; 58(2):104-11.
  • [34]The International Mouse Phenotyping Consortium. https://www. mousephenotype.org/data/genes/MGI:2137706#order webcite
  • [35]Bottega R, Marconi C, Faleschini M, Baj G, Cagioni C, Pecci A et al.. ACTN1-related thrombocytopenia: identification of novel families for phenotypic characterization. Blood. 2015; 125(5):869-72.
  • [36]Gueguen P, Rouault K, Chen JM, Raguenes O, Fichou Y, Hardy E et al.. A Missense Mutation in the Alpha-Actinin 1 Gene (ACTN1) Is the Cause of Autosomal Dominant Macrothrombocytopenia in a Large French Family. PLoS One. 2013; 8(9):e74728.
  • [37]Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H et al.. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet. 2013; 92(3):431-8.
  • [38]Kunishima S, Saito H. Congenital macrothrombocytopenias. Blood Rev. 2006; 20(2):111-21.
  • [39]Thon JN, Italiano JE. Does size matter in platelet production? Blood. 2012; 120(8):1552-61.
  • [40]Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol. 2011; 23(1):39-46.
  • [41]Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG et al.. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab. 2003; 80(1–2):207-15.
  • [42]Theis JL, Bos JM, Bartleson VB, Will ML, Binder J, Vatta M et al.. Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2006; 351(4):896-902.
  • [43]Maron BJ. Cardiology patient pages. Hypertrophic cardiomyopathy. Circulation. 2002; 106(19):2419-21.
  • [44]Chiu C, Bagnall RD, Ingles J, Yeates L, Kennerson M, Donald JA et al.. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J Am Coll Cardiol. 2010; 55(11):1127-35.
  • [45]Bagnall RD, Molloy LK, Kalman JM, Semsarian C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med Genet. 2014; 15(1):99.
  • [46]Girolami F, Iascone M, Tomberli B, Bardi S, Benelli M, Marseglia G et al.. Novel alpha-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhythmias: a massively parallel sequencing study. Circ Cardiovasc Genet. 2014; 7(6):741-50.
  • [47]Kelly M, Semsarian C. Multiple mutations in genetic cardiovascular disease: a marker of disease severity? Circ Cardiovasc Genet. 2009; 2(2):182-90.
  • [48]MacArthur DG, North KN. ACTN3: A genetic influence on muscle function and athletic performance. Exerc Sport Sci Rev. 2007; 35(1):30-4.
  • [49]Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S et al.. Differential expression of the actin-binding proteins, alpha-actinin-2 and −3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet. 2001; 10(13):1335-46.
  • [50]North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet. 1999; 21(4):353-4.
  • [51]Lek M, Quinlan KG, North KN. The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric alpha-actinins. Bioessays. 2010; 32(1):17-25.
  • [52]Holterhoff CK, Saunders RH, Brito EE, Wagner DS. Sequence and expression of the zebrafish alpha-actinin gene family reveals conservation and diversification among vertebrates. Dev Dyn. 2009; 238(11):2936-47.
  • [53]Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S et al.. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003; 73(3):627-31.
  • [54]Eynon N, Ruiz JR, Femia P, Pushkarev VP, Cieszczyk P, Maciejewska-Karlowska A et al.. The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS One. 2012; 7(8):e43132.
  • [55]Alfred T, Ben-Shlomo Y, Cooper R, Hardy R, Cooper C, Deary IJ et al.. ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat. 2011; 32(9):1008-18.
  • [56]Yang N, MacArthur DG, Wolde B, Onywera VO, Boit MK, Lau SY et al.. The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc. 2007; 39(11):1985-8.
  • [57]Larsen HB. Kenyan dominance in distance running. Comp Biochem Physiol A Mol Integr Physiol. 2003; 136(1):161-70.
  • [58]MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW et al.. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet. 2007; 39(10):1261-5.
  • [59]Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism. Physiology (Bethesda). 2010; 25(4):250-9.
  • [60]Quinlan KG, Seto JT, Turner N, Vandebrouck A, Floetenmeyer M, Macarthur DG et al.. Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet. 2010; 19(7):1335-46.
  • [61]Friedlander SM, Herrmann AL, Lowry DP, Mepham ER, Lek M, North KN et al.. ACTN3 allele frequency in humans covaries with global latitudinal gradient. PLoS One. 2013; 8(1):e52282.
  • [62]Head SI, Chan S, Houweling PJ, Quinlan KG, Murphy R, Wagner S et al.. Altered Ca2+ kinetics associated with alpha-actinin-3 deficiency may explain positive selection for ACTN3 null allele in human evolution. PLoS Genet. 2015; 11(2):e1004862.
  • [63]Sjoblom B, Salmazo A, Djinovic-Carugo K. Alpha-actinin structure and regulation. Cell Mol Life Sci. 2008; 65(17):2688-701.
  • [64]Seto JT, Quinlan KG, Lek M, Zheng XF, Garton F, MacArthur DG et al.. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J Clin Invest. 2013; 123(10):4255-63.
  • [65]Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM et al.. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 1998; 12(16):2499-509.
  • [66]Delling U, Tureckova J, Lim HW, De Windt LJ, Rotwein P, Molkentin JD. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol. 2000; 20(17):6600-11.
  • [67]Long YC, Glund S, Garcia-Roves PM, Zierath JR. Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J Biol Chem. 2007; 282(3):1607-14.
  • [68]Barbolina MV, Adley BP, Kelly DL, Fought AJ, Scholtens DM, Shea LD et al.. Motility-related actinin alpha-4 is associated with advanced and metastatic ovarian carcinoma. Lab Invest. 2008; 88(6):602-14.
  • [69]Fukushima S, Yoshida A, Honda K, Maeshima AM, Narita Y, Yamada T et al.. Immunohistochemical actinin-4 expression in infiltrating gliomas: association with WHO grade and differentiation. Brain Tumor Pathol. 2013; 31(1):11-6.
  • [70]Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H et al.. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol. 1998; 140(6):1383-93.
  • [71]Kikuchi S, Honda K, Tsuda H, Hiraoka N, Imoto I, Kosuge T et al.. Expression and gene amplification of actinin-4 in invasive ductal carcinoma of the pancreas. Clin Cancer Res. 2008; 14(17):5348-56.
  • [72]Miyanaga A, Honda K, Tsuta K, Masuda M, Yamaguchi U, Fujii G et al.. Diagnostic and prognostic significance of the alternatively spliced ACTN4 variant in high-grade neuroendocrine pulmonary tumours. Ann Oncol. 2012; 24(1):84-90.
  • [73]Quick Q, Skalli O. Alpha-actinin 1 and alpha-actinin 4: contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Exp Cell Res. 2010; 316(7):1137-47.
  • [74]Welsch T, Keleg S, Bergmann F, Bauer S, Hinz U, Schmidt J. Actinin-4 expression in primary and metastasized pancreatic ductal adenocarcinoma. Pancreas. 2009; 38(8):968-76.
  • [75]Yamamoto S, Tsuda H, Honda K, Takano M, Tamai S, Imoto I et al.. ACTN4 gene amplification and actinin-4 protein overexpression drive tumour development and histological progression in a high-grade subset of ovarian clear-cell adenocarcinomas. Histopathology. 2012; 60(7):1073-83.
  • [76]Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ et al.. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000; 24(3):251-6.
  • [77]Weins A, Kenlan P, Herbert S, Le TC, Villegas I, Kaplan BS et al.. Mutational and Biological Analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2005; 16(12):3694-701.
  • [78]An HT, Kim J, Yoo S, Ko J. sLZIP negatively regulates skeletal muscle differentiation via interaction with alpha-actinin-4. J Biol Chem. 2013; 289(8):4969-79.
  • [79]Chakraborty S, Reineke EL, Lam M, Li X, Liu Y, Gao C et al.. Alpha-actinin 4 potentiates myocyte enhancer factor-2 transcription activity by antagonizing histone deacetylase 7. J Biol Chem. 2006; 281(46):35070-80.
  • [80]Goffart S, Franko A, Clemen CS, Wiesner RJ. Alpha-actinin 4 and BAT1 interaction with the cytochrome c promoter upon skeletal muscle differentiation. Curr Genet. 2006; 49(2):125-35.
  • [81]Khurana S, Chakraborty S, Cheng X, Su YT, Kao HY. The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. J Biol Chem. 2011; 286(3):1850-9.
  • [82]Khurana S, Chakraborty S, Zhao X, Liu Y, Guan D, Lam M et al.. Identification of a novel LXXLL motif in alpha-actinin 4-spliced isoform that is critical for its interaction with estrogen receptor alpha and co-activators. J Biol Chem. 2012; 287(42):35418-29.
  • [83]Kumeta M, Yoshimura SH, Harata M, Takeyasu K. Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J Cell Sci. 2010; 123(Pt 7):1020-30.
  • [84]Poch MT, Al-Kassim L, Smolinski SM, Hines RN. Two distinct classes of CCAAT box elements that bind nuclear factor-Y/alpha-actinin-4: potential role in human CYP1A1 regulation. Toxicol Appl Pharmacol. 2004; 199(3):239-50.
  • [85]Huang SM, Huang CJ, Wang WM, Kang JC, Hsu WC. The enhancement of nuclear receptor transcriptional activation by a mouse actin-binding protein, alpha actinin 2. J Mol Endocrinol. 2004; 32(2):481-96.
  • [86]Honda K. The biological role of actinin-4 ACTN4 in malignant phenotypes of cancer. Cell Bioscie. DOI:10.1186/s13578-015-0031-0
  • [87]Feng D, DuMontier C, Pollak MR. The role of alpha-actinin-4 in human kidney disease. Cell Biosci. in press.
  文献评价指标  
  下载次数:6次 浏览次数:10次