期刊论文详细信息
Journal of Translational Medicine
Association of cancer metabolism-related proteins with oral carcinogenesis – indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma?
Siegmar Reinert2  Wiebke Kraut2  Peter Teriete1  Adelheid Munz2  Thorsten Biegner3  Max Lehmann2  Marcel Cetindis2  Martin Grimm2 
[1] Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA;Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany;Department of Pathology, University Hospital Tuebingen, Liebermeisterstrasse 8, Tuebingen 72076, Germany
关键词: Targeted anti-mitochondrial therapy;    Carbohydrate-restricted diets;    Mitochondrial oxidative phosphorylation;    Glycolysis-related proteins;    Tumor metabolism;    Oral squamous cell carcinoma;   
Others  :  1148681
DOI  :  10.1186/1479-5876-12-208
 received in 2014-05-05, accepted in 2014-07-02,  发布年份 2014
PDF
【 摘 要 】

Background

Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC).

Methods

Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines.

Results

Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay).

Conclusions

This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.

【 授权许可】

   
2014 Grimm et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404190125535.pdf 3787KB PDF download
Figure 11. 61KB Image download
Figure 10. 356KB Image download
Figure 9. 108KB Image download
Figure 8. 113KB Image download
Figure 7. 117KB Image download
Figure 6. 112KB Image download
Figure 5. 111KB Image download
Figure 4. 115KB Image download
Figure 3. 113KB Image download
Figure 2. 115KB Image download
Figure 1. 114KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Driemel O, Hertel K, Reichert TE, Kosmehl H: [Current classification of precursor lesions of oral squamous cell carcinoma principles of the WHO classification 2005]. Mund Kiefer Gesichtschir 2006, 10(2):89-93.
  • [2]Tanaka T, Tanaka M, Tanaka T: Oral carcinogenesis and oral cancer chemoprevention: a review. Patholog Res Int 2011, 2011:431246.
  • [3]Grimm M: Prognostic value of clinicopathological parameters and outcome in 484 patients with oral squamous cell carcinoma: microvascular invasion (V+) is an independent prognostic factor for OSCC. Clin Transl Oncol 2012, 14(11):870-880.
  • [4]Perez-Sayans M, Suarez-Penaranda JM, Pilar GD, Barros-Angueira F, Gandara-Rey JM, Garcia-Garcia A: Hypoxia-inducible factors in OSCC. Cancer Lett 2011, 313(1):1-8.
  • [5]Tennant DA, Duran RV, Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 2010, 10(4):267-277.
  • [6]PO D, Jorge CC, Oliveira DT, Pereira MC: Hypoxic condition and prognosis in oral squamous cell carcinoma. Anticancer Res 2014, 34(2):605-612.
  • [7]Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, Muhs HJ, Munz A, Nadtotschi T, Koenig K, Sanger J, Feyen O, Hofmann H, Reinert S, Coy JF: A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 2013, 13(1):569.
  • [8]Zhang M, Chai YD, Brumbaugh J, Liu X, Rabii R, Feng S, Misuno K, Messadi D, Hu S: Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes. BMC Cancer 2014, 14(1):223.
  • [9]Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S: GLUT-1+/TKTL1+ co-expression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014, 1:1.
  • [10]Alfarouk KO, Shayoub ME, Muddathir AK, Elhassan GO, Bashir AH: Evolution of tumor metabolism might reflect carcinogenesis as a reverse evolution process (Dismantling of Multicellularity). Cancers (Basel) 2011, 3(3):3002-3017.
  • [11]Hamanaka RB, Chandel NS: Targeting glucose metabolism for cancer therapy. J Exp Med 2012, 209(2):211-215.
  • [12]Frezza C, Gottlieb E: Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 2009, 19(1):4-11.
  • [13]Green DR, Reed JC: Mitochondria and apoptosis. Science 1998, 281(5381):1309-1312.
  • [14]Murphy MP: How mitochondria produce reactive oxygen species. Biochem J 2009, 417(1):1-13.
  • [15]Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E: Energy metabolism in tumor cells. FEBS J 2007, 274(6):1393-1418.
  • [16]Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, Bontempo AF, Negassa A, Sparano JA: Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 2012, 28(10):1028-1035.
  • [17]Keijer J, Bekkenkamp-Grovenstein M, Venema D, Dommels YE: Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. Biochim Biophys Acta 2011, 1807(6):697-706.
  • [18]Schumacker PT: Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 2006, 10(3):175-176.
  • [19]Fulda S: Modulation of apoptosis by natural products for cancer therapy. Planta Med 2010, 76(11):1075-1079.
  • [20]Pfeiffer T, Schuster S, Bonhoeffer S: Cooperation and competition in the evolution of ATP-producing pathways. Science 2001, 292(5516):504-507.
  • [21]Mandujano-Tinoco EA, Gallardo-Perez JC, Marin-Hernandez A, Moreno-Sanchez R, Rodriguez-Enriquez S: Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids. Biochim Biophys Acta 2013, 1833(3):541-551.
  • [22]Zu XL, Guppy M: Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 2004, 313(3):459-465.
  • [23]Rodriguez-Enriquez S, Gallardo-Perez JC, Marin-Hernandez A, Aguilar-Ponce JL, Mandujano-Tinoco EA, Meneses A, Moreno-Sanchez R: Oxidative phosphorylation as a target to arrest malignant neoplasias. Curr Med Chem 2011, 18(21):3156-3167.
  • [24]Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324(5930):1029-1033.
  • [25]Lunt SY, Vander Heiden MG: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011, 27:441-464.
  • [26]Meijer TW, Kaanders JH, Span PN, Bussink J: Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Canc Res 2012, 18(20):5585-5594.
  • [27]Cheng CW, Kuo CY, Fan CC, Fang WC, Jiang SS, Lo YK, Wang TY, Kao MC, Lee AY: Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 2013, 4:e681.
  • [28]Gallagher EJ, Fierz Y, Ferguson RD, LeRoith D: The pathway from diabetes and obesity to cancer, on the route to targeted therapy. Endocr Pract 2010, 16(5):864-873.
  • [29]LeRoith D, Roberts CT Jr: The insulin-like growth factor system and cancer. Cancer Lett 2003, 195(2):127-137.
  • [30]Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010, 39(2):171-183.
  • [31]Zha X, Sun Q, Zhang H: mTOR upregulation of glycolytic enzymes promotes tumor development. Cell Cycle 2011, 10(7):1015-1016.
  • [32]Pollak M: The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012, 12(3):159-169.
  • [33]Pollak M: The insulin receptor/insulin-like growth factor receptor family as a therapeutic target in oncology. Clin Cancer Res 2012, 18(1):40-50.
  • [34]Emond JA, Pierce JP, Natarajan L, Gapuz LR, Nguyen J, Parker BA, Varki NM, Patterson RE: Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGF-1 receptor. Cancer Epidemiol Biomarkers Prev 2014, 23:1273-1279.
  • [35]Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, Jha AK, Smolen GA, Clasquin MF, Robey RB, Hay N: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013, 24(2):213-228.
  • [36]Mathupala SP, Ko YH, Pedersen PL: Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 2009, 19(1):17-24.
  • [37]Yamada T, Uchida M, Kwang-Lee K, Kitamura N, Yoshimura T, Sasabe E, Yamamoto T: Correlation of metabolism/hypoxia markers and fluorodeoxyglucose uptake in oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol 2012, 113(4):464-471.
  • [38]Wang G, Xu Z, Wang C, Yao F, Li J, Chen C, Sun S: Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Lett 2013, 6(6):1701-1706.
  • [39]Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S: Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis 2013, 30(4):529-540.
  • [40]Kim HM, Kim Do H, Jung WH, Koo JS: Metabolic phenotypes in primary unknown metastatic carcinoma. J Transl Med 2014, 12:2.
  • [41]Kim MJ, Kim DH, Jung WH, Koo JS: Expression of metabolism-related proteins in triple-negative breast cancer. Int J Clin Exp Pathol 2014, 7(1):301-312.
  • [42]Sobin LH, Ch W: UICC. TNM Classification of Malignant Tumors. 7th edition. Berlin: Springer Verlag; 2010.
  • [43]Hamilton SR, Aaltonen LA: Pathology and Genetics. Tumours of the Digestive System. Third edition. Lyon: IARC Press; 2000.
  • [44]Walker RA: Quantification of immunohistochemistry–issues concerning methods, utility and semiquantitative assessment I. Histopathology 2006, 49(4):406-410.
  • [45]Grimm M, Kim M, Rosenwald A, von Raden BH, Tsaur I, Meier E, Heemann U, Germer CT, Gasser M, Waaga-Gasser AM: Tumour-mediated TRAIL-Receptor expression indicates effective apoptotic depletion of infiltrating CD8+ immune cells in clinical colorectal cancer. Eur J Cancer 2010, 46(12):2314-2323.
  • [46]Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992, 119(3):493-501.
  • [47]Ansari B, Coates PJ, Greenstein BD, Hall PA: In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol 1993, 170(1):1-8.
  • [48]Edington KG, Loughran OP, Berry IJ, Parkinson EK: Cellular immortality: a late event in the progression of human squamous cell carcinoma of the head and neck associated with p53 alteration and a high frequency of allele loss. Mol Carcinog 1995, 13(4):254-265.
  • [49]Bentz S, Cee A, Endlicher E, Wojtal KA, Naami A, Pesch T, Lang S, Schubert P, Fried M, Weber A, Coy JF, Goelder S, Knuchel R, Hausmann M, Rogler G: Hypoxia Induces the Expression of Transketolase-Like 1 in Human Colorectal Cancer. Digestion 2013, 88(3):182-192.
  • [50]Key G, Becker MH, Baron B, Duchrow M, Schluter C, Flad HD, Gerdes J: New Ki-67-equivalent murine monoclonal antibodies (MIB 1–3) generated against bacterially expressed parts of the Ki-67 cDNA containing three 62 base pair repetitive elements encoding for the Ki-67 epitope. Lab Invest 1993, 68(6):629-636.
  • [51]Alexander D, Schafer F, Olbrich M, Friedrich B, Buhring HJ, Hoffmann J, Reinert S: MSCA-1/TNAP selection of human jaw periosteal cells improves their mineralization capacity. Cell Physiol Biochem 2010, 26(6):1073-1080.
  • [52]Grimm M, Lazariotou M, Kircher S, Stuermer L, Reiber C, Hofelmayr A, Gattenlohner S, Otto C, Germer CT, von Rahden BH: MMP-1 is a (pre-)invasive factor in Barrett-associated esophageal adenocarcinomas and is associated with positive lymph node status. J Transl Med 2010, 8:99.
  • [53]Alexander D, Hoffmann J, Munz A, Friedrich B, Geis-Gerstorfer J, Reinert S: Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells. J Mater Sci Mater Med 2008, 19(3):965-974.
  • [54]von Rahden BH, Kircher S, Kafka M, Stuermer L, Reiber C, Gattenlohner S, Germer CT, Grimm M: Glucocorticoid-induced TNFR family-related receptor (GITR)-expression in tumor infiltrating leucocytes (TILs) is associated with the pathogenesis of esophageal adenocarcinomas with and without Barrett’s mucosa. Cancer Biomark 2010, 7(6):285-294.
  • [55]Fulda S: Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondrion 2010, 10(6):598-603.
  • [56]Hamanaka RB, Chandel NS: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 2010, 35(9):505-513.
  • [57]Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P, Minetti C, Lisanti MP, Sotgia F: Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 2011, 10(23):4047-4064.
  • [58]Fulda S, Galluzzi L, Kroemer G: Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010, 9(6):447-464.
  • [59]Chen V, Staub RE, Fong S, Tagliaferri M, Cohen I, Shtivelman E: Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS. PLoS One 2012, 7(2):e30300.
  • [60]Cairns RA, Harris IS, Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer 2011, 11(2):85-95.
  • [61]Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW: Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011, 475(7355):231-234.
  • [62]Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P: Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006, 10(3):241-252.
  • [63]Lee P, Vousden KH, Cheung EC: TIGAR, TIGAR, burning bright. Cancer Metab 2014, 2(1):1.
  • [64]Kioka H, Kato H, Fujikawa M, Tsukamoto O, Suzuki T, Imamura H, Nakano A, Higo S, Yamazaki S, Matsuzaki T, Takafuji K, Asanuma H, Asakura M, Minamino T, Shintani Y, Yoshida M, Noji H, Kitakaze M, Komuro I, Asano Y, Takashima S: Evaluation of intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a positive regulator of oxidative phosphorylation. Proc Natl Acad Sci U S A 2014, 111(1):273-278.
  • [65]Surh YJ: Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003, 3(10):768-780.
  • [66]Ding Y, Yao H, Yao Y, Fai LY, Zhang Z: Protection of dietary polyphenols against oral cancer. Nutr 2013, 5(6):2173-2191.
  • [67]Lamonte G, Tang X, Chen JL, Wu J, Ding CK, Keenan MM, Sangokoya C, Kung HN, Ilkayeva O, Boros LG, Newgard CB, Chi JT: Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab 2013, 1(1):23.
  • [68]Ward PS, Thompson CB: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21(3):297-308.
  • [69]DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008, 7(1):11-20.
  • [70]Phan L, Yeung S-C, Lee M-H: Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 2014, 11:1-19.
  • [71]Martin KR: Targeting apoptosis with dietary bioactive agents. Exp Biol Med 2006, 231(2):117-129.
  • [72]Ralph SJ, Neuzil J: Mitochondria as targets for cancer therapy. Mol Nutr Food Res 2009, 53(1):9-28.
  • [73]Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Moreno-Sanchez R: Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 2010, 31(1):29-59.
  • [74]Trachootham D, Alexandre J, Huang P: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009, 8(7):579-591.
  • [75]Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005, 307(5706):58-62.
  • [76]Macintyre AN, Rathmell JC: Activated lymphocytes as a metabolic model for carcinogenesis. Cancer & metabolism 2013, 1(1):5.
  • [77]Kim JY, An JM, Chung WY, Park KK, Hwang JK, du Kim S, Seo SR, Seo JT: Xanthorrhizol induces apoptosis through ROS-mediated MAPK activation in human oral squamous cell carcinoma cells and inhibits DMBA-induced oral carcinogenesis in hamsters. Phytother Res 2013, 27(4):493-498.
  • [78]Bhattarai G, Lee YH, Lee NH, Lee IK, Yun BS, Hwang PH, Yi HK: Fomitoside-K from Fomitopsis nigra induces apoptosis of human oral squamous cell carcinomas (YD-10B) via mitochondrial signaling pathway. Biol Pharm Bull 2012, 35(10):1711-1719.
  • [79]Yen CY, Chiu CC, Haung RW, Yeh CC, Huang KJ, Chang KF, Hseu YC, Chang FR, Chang HW, Wu YC: Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction. Mutat Res 2012, 747(2):253-258.
  • [80]Gonzales CB, Kirma NB, De La Chapa JJ, Chen R, Henry MA, Luo S, Hargreaves KM: Vanilloids induce oral cancer apoptosis independent of TRPV1. Oral Oncol 2014, 50:437-447.
  • [81]Yeh CC, Yang JI, Lee JC, Tseng CN, Chan YC, Hseu YC, Tang JY, Chuang LY, Huang HW, Chang FR, Chang HW: Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement Altern Med 2012, 12:142.
  • [82]Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR: Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: Phytoblockers of metastasis cascade. Cancer Metastasis Rev 2014.
  • [83]Upadhyay J, Kesharwani RK, Misra K: Comparative study of antioxidants as cancer preventives through inhibition of HIF-1 alpha activity. Bioinformation 2009, 4(6):233-236.
  • [84]Iriti M, Varoni EM: Chemopreventive potential of flavonoids in oral squamous cell carcinoma in human studies. Nutr 2013, 5(7):2564-2576.
  • [85]Zhou H, Luo Y, Huang S: Updates of mTOR inhibitors. Anti Cancer Agents Med Chem 2010, 10(7):571-581.
  • [86]Huang S: Inhibition of PI3K/Akt/mTOR signaling by natural products. Anti Cancer Agents Med Chem 2013, 13(7):967-970.
  • [87]Ramos-Montoya A, Lee WN, Bassilian S, Lim S, Trebukhina RV, Kazhyna MV, Ciudad CJ, Noe V, Centelles JJ, Cascante M: Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer. Int J Cancer 2006, 119(12):2733-2741.
  • [88]Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ: Dietary polyphenolic phytochemicals–promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 2007, 120(3):451-458.
  • [89]Koeppen H, Yu W, Zha J, Pandita A, Penuel E, Rangell L, Raja R, Mohan S, Patel R, Desai R, Fu L, Do A, Parab V, Xia X, Januario T, Louie SG, Filvaroff E, Shames DS, Wistuba II, Lipkind M, Huang J, Lazarov M, Ramakrishnan V, Amler LC, Phan SC, Patel P, Peterson A, Yauch RL: Biomarker analyses from a placebo-controlled phase ii study evaluating erlotinib {+/-} onartuzumab in advanced non-small-cell lung cancer: MET expression levels are predictive of patient benefit. Clin Cancer Res 2014.
  • [90]Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE: Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014, 35(10):3365-3383.
  • [91]Prasad S, Tyagi AK, Aggarwal BB: Recent Developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 2014, 46(1):2-18.
  • [92]Zlotogorski A, Dayan A, Dayan D, Chaushu G, Salo T, Vered M: Nutraceuticals as new treatment approaches for oral cancer–I: Curcumin. Oral Oncol 2013, 49(3):187-191.
  • [93]Kim JY, Cho TJ, Woo BH, Choi KU, Lee CH, Ryu MH, Park HR: Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch Oral Biol 2012, 57(8):1018-1025.
  • [94]Clark CA, McEachern MD, Shah SH, Rong Y, Rong X, Smelley CL, Caldito GC, Abreo FW, Nathan CO: Curcumin inhibits carcinogen and nicotine-induced Mammalian target of rapamycin pathway activation in head and neck squamous cell carcinoma. Cancer Prev Res 2010, 3(12):1586-1595.
  • [95]Gao W, Chan JY, Wei WI, Wong TS: Anti-cancer effects of curcumin on head and neck cancers. Anti Cancer Agents Med Chem 2012, 12(9):1110-1116.
  • [96]Chen J, Wang FL, Chen WD: Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol Biol Rep 2014, 41:4583-4594.
  • [97]Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001, 21(4B):2895-2900.
  • [98]Goel A, Aggarwal BB: Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer 2010, 62(7):919-930.
  • [99]Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr, Brenner DE: Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res 2011, 4(3):354-364.
  • [100]Choi H, Chun YS, Kim SW, Kim MS, Park JW: Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol 2006, 70(5):1664-1671.
  • [101]Tanaka T, Makita H, Ohnishi M, Hirose Y, Wang A, Mori H, Satoh K, Hara A, Ogawa H: Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res 1994, 54(17):4653-4659.
  • [102]Beevers CS, Zhou H, Huang S: Hitting the golden TORget: curcumin’s effects on mTOR signaling. Anti Cancer Agents Med Chem 2013, 13(7):988-994.
  • [103]Wu Y, Liu F: Targeting mTOR: evaluating the therapeutic potential of resveratrol for cancer treatment. Anti Cancer Agents Med Chem 2013, 13(7):1032-1038.
  • [104]Zlotogorski A, Dayan A, Dayan D, Chaushu G, Salo T, Vered M: Nutraceuticals as new treatment approaches for oral cancer: II. Green tea extracts and resveratrol. Oral Oncol 2013, 49(6):502-506.
  • [105]Gescher A, Steward WP, Brown K: Resveratrol in the management of human cancer: how strong is the clinical evidence? Ann N Y Acad Sci 2013, 1290:12-20.
  • [106]Singh CK, George J, Ahmad N: Resveratrol-based combinatorial strategies for cancer management. Ann N Y Acad Sci 2013, 1290:113-121.
  • [107]Shen YA, Lin CH, Chi WH, Wang CY, Hsieh YT, Wei YH, Chen YJ: Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid Based Complement Altern Med 2013, 2013:590393.
  • [108]Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y: Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004, 24(5A):2783-2840.
  • [109]Jung KH, Lee JH, Thien Quach CH, Paik JY, Oh H, Park JW, Lee EJ, Moon SH, Lee KH: Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1alpha activation. J Nucl Med 2013, 54(12):2161-2167.
  • [110]Widlund AL, Baur JA, Vang O: mTOR: more targets of resveratrol? Expert Rev Mol Med 2013, 15:e10.
  • [111]Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F: Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem 2010, 285(47):36387-36394.
  • [112]Berta GN, Salamone P, Sprio AE, Di Scipio F, Marinos LM, Sapino S, Carlotti ME, Cavalli R, Di Carlo F: Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch by topical application of resveratrol complexed with 2-hydroxypropyl-beta-cyclodextrin. Oral Oncol 2010, 46(1):42-48.
  • [113]Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC: Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 2013, 19(34):6064-6093.
  • [114]la Porte C, Voduc N, Zhang G, Seguin I, Tardiff D, Singhal N, Cameron DW: Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet 2010, 49(7):449-454.
  • [115]Ramshankar V, Krishnamurthy A: Chemoprevention of oral cancer: Green tea experience. J Nat Sci Biol Med 2014, 5(1):3-7.
  • [116]Chang CM, Chang PY, Tu MG, Lu CC, Kuo SC, Amagaya S, Lee CY, Jao HY, Chen MY, Yang JS: Epigallocatechin gallate sensitizes CAL-27 human oral squamous cell carcinoma cells to the anti-metastatic effects of gefitinib (Iressa) via synergistic suppression of epidermal growth factor receptor and matrix metalloproteinase-2. Oncol Rep 2012, 28(5):1799-1807.
  • [117]Tao L, Forester SC, Lambert JD: The role of the mitochondrial oxidative stress in the cytotoxic effects of the green tea catechin, (-)-epigallocatechin-3-gallate, in oral cells. Mol Nutr Food Res 2014, 58(4):665-676.
  • [118]Zhang Q, Tang X, Lu Q, Zhang Z, Rao J, Le AD: Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol Cancer Ther 2006, 5(5):1227-1238.
  • [119]Wang H, Bian S, Yang CS: Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogenesis 2011, 32(12):1881-1889.
  • [120]Casto BC, Knobloch TJ, Galioto RL, Yu Z, Accurso BT, Warner BM: Chemoprevention of oral cancer by lyophilized strawberries. Anticancer Res 2013, 33(11):4757-4766.
  • [121]Vidya Priyadarsini R, Kumar N, Khan I, Thiyagarajan P, Kondaiah P, Nagini S: Gene expression signature of DMBA-induced hamster buccal pouch carcinomas: modulation by chlorophyllin and ellagic acid. PLoS One 2012, 7(4):e34628.
  • [122]Hou DX, Fujii M, Terahara N, Yoshimoto M: Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J Biomed Biotechnol 2004, 2004(5):321-325.
  • [123]Cvorovic J, Tramer F, Granzotto M, Candussio L, Decorti G, Passamonti S: Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Arch Biochem Biophys 2010, 501(1):151-157.
  • [124]Vanella L, Di Giacomo C, Acquaviva R, Barbagallo I, Cardile V, Kim DH, Abraham NG, Sorrenti V: Apoptotic markers in a prostate cancer cell line: effect of ellagic acid. Oncol Rep 2013, 30(6):2804-2810.
  • [125]Lee YK, Lee WS, Kim GS, Park OJ: Anthocyanins are novel AMPKalpha1 stimulators that suppress tumor growth by inhibiting mTOR phosphorylation. Oncol Rep 2010, 24(6):1471-1477.
  • [126]Quintos L, Lee IA, Kim HJ, Lim JS, Park J, Sung MK, Seo YR, Kim JS: Significance of p27 as potential biomarker for intracellular oxidative status. Nut Res Pract 2010, 4(5):351-355.
  • [127]Kavitha K, Thiyagarajan P, Rathna Nandhini J, Mishra R, Nagini S: Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie 2013, 95(8):1629-1639.
  • [128]Park SJ, Kim MJ, Kim YK, Kim SM, Park JY, Myoung H: Combined cetuximab and genistein treatment shows additive anti-cancer effect on oral squamous cell carcinoma. Cancer Lett 2010, 292(1):54-63.
  • [129]Johnson TL, Lai MB, Lai JC, Bhushan A: Inhibition of Cell Proliferation and MAP Kinase and Akt Pathways in Oral Squamous cell Carcinoma by Genistein and Biochanin A. Evid Based Complement Altern Med 2010, 7(3):351-358.
  • [130]Shin JI, Shim JH, Kim KH, Choi HS, Kim JW, Lee HG, Kim BY, Park SN, Park OJ, Yoon DY: Sensitization of the apoptotic effect of gamma-irradiation in genistein-pretreated CaSki cervical cancer cells. J Microbiol Biotechnol 2008, 18(3):523-531.
  • [131]Sahin K, Tuzcu M, Basak N, Caglayan B, Kilic U, Sahin F, Kucuk O: Sensitization of cervical cancer cells to cisplatin by genistein: the role of NFkappaB and Akt/mTOR signaling pathways. J Oncol 2012, 2012:461562.
  • [132]Singh-Gupta V, Zhang H, Banerjee S, Kong D, Raffoul JJ, Sarkar FH, Hillman GG: Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer 2009, 124(7):1675-1684.
  • [133]Hillman GG, Singh-Gupta V: Soy isoflavones sensitize cancer cells to radiotherapy. Free Radic Biol Med 2011, 51(2):289-298.
  • [134]Maggioni D, Garavello W, Rigolio R, Pignataro L, Gaini R, Nicolini G: Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int J Oncol 2013, 43(5):1675-1682.
  • [135]Chan LP, Chou TH, Ding HY, Chen PR, Chiang FY, Kuo PL, Liang CH: Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochim Biophys Acta 2012, 1820(7):1081-1091.
  • [136]Silvan S, Manoharan S: Apigenin prevents deregulation in the expression pattern of cell-proliferative, apoptotic, inflammatory and angiogenic markers during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Arch Oral Biol 2013, 58(1):94-101.
  • [137]Swanson HI, Choi EY, Helton WB, Gairola CG, Valentino J: Impact of apigenin and kaempferol on human head and neck squamous cell carcinoma. Oral Surg Oral Med Oral pathol Oral Radiol 2014, 117(2):214-220.
  • [138]Tong X, Pelling JC: Targeting the PI3K/Akt/mTOR axis by apigenin for cancer prevention. Anti Cancer Agents Med Chem 2013, 13(7):971-978.
  • [139]Shukla S, Gupta S: Apigenin: a promising molecule for cancer prevention. Pharm Res 2010, 27(6):962-978.
  • [140]Melstrom LG, Salabat MR, Ding XZ, Strouch MJ, Grippo PJ, Mirzoeva S, Pelling JC, Bentrem DJ: Apigenin down-regulates the hypoxia response genes: HIF-1alpha, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res 2011, 167(2):173-181.
  • [141]Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE: A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer 2007, 121(10):2225-2232.
  • [142]Makita H, Tanaka T, Fujitsuka H, Tatematsu N, Satoh K, Hara A, Mori H: Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin. Cancer Res 1996, 56(21):4904-4909.
  • [143]Chen SF, Nieh S, Jao SW, Liu CL, Wu CH, Chang YC, Yang CY, Lin YS: Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells. PLoS One 2012, 7(11):e49275.
  • [144]Sharma H, Sen S, Singh N: Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther 2005, 4(9):949-955.
  • [145]Kim GT, Lee SH, Kim JI, Kim YM: Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med 2014, 33(4):863-869.
  • [146]Bruning A: Inhibition of mTOR signaling by quercetin in cancer treatment and prevention. Anti Cancer Agents Med Chem 2013, 13(7):1025-1031.
  • [147]Wang K, Liu R, Li J, Mao J, Lei Y, Wu J, Zeng J, Zhang T, Wu H, Chen L, Huang C, Wei Y: Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1alpha-mediated signaling. Autophagy 2011, 7(9):966-978.
  • [148]Lee DH, Lee YJ: Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis. J Cell Biochem 2008, 105(2):546-553.
  • [149]Chang WW, Hu FW, Yu CC, Wang HH, Feng HP, Lan C, Tsai LL, Chang YC: Quercetin in elimination of tumor initiating stem-like and mesenchymal transformation property in head and neck cancer. Head Neck 2013, 35(3):413-419.
  • [150]Babaee N, Moslemi D, Khalilpour M, Vejdani F, Moghadamnia Y, Bijani A, Baradaran M, Kazemi MT, Khalilpour A, Pouramir M, Moghadamnia AA: Antioxidant capacity of calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study. Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences 2013, 21(1):18.
  • [151]Lin JF, Tsai TF, Liao PC, Lin YH, Lin YC, Chen HE, Chou KY, Hwang TI: Benzyl isothiocyanate induces protective autophagy in human prostate cancer cells via inhibition of mTOR signaling. Carcinogenesis 2013, 34(2):406-414.
  • [152]Shabany K, Chiu PC, Raghian A, Chang KW, Solt DB: Rapid in vivo assay for topical oral cancer chemopreventive agents. Int J Oncol 2002, 21(1):159-164.
  • [153]Cho NP, Han HS, Leem DH, Choi IS, Jung JY, Kim HJ, Moon KS, Choi KH, Soh Y, Kong G, Cho SD, Choi SH: Sulforaphane enhances caspase-dependent apoptosis through inhibition of cyclooxygenase-2 expression in human oral squamous carcinoma cells and nude mouse xenograft model. Oral Oncol 2009, 45(8):654-660.
  • [154]Tanaka T, Kojima T, Morishita Y, Mori H: Inhibitory effects of the natural products indole-3-carbinol and sinigrin during initiation and promotion phases of 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. Jpn J Cancer Res 1992, 83(8):835-842.
  • [155]Xiao D, Lew KL, Zeng Y, Xiao H, Marynowski SW, Dhir R, Singh SV: Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinogenesis 2006, 27(11):2223-2234.
  • [156]Shapiro TA, Fahey JW, Dinkova-Kostova AT, Holtzclaw WD, Stephenson KK, Wade KL, Ye L, Talalay P: Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 2006, 55(1):53-62.
  • [157]Yao H, Wang H, Zhang Z, Jiang BH, Luo J, Shi X: Sulforaphane inhibited expression of hypoxia-inducible factor-1alpha in human tongue squamous cancer cells and prostate cancer cells. Int J Cancer 2008, 123(6):1255-1261.
  • [158]Camacho-Alonso F, Lopez-Jornet P, Tudela-Mulero MR: Synergic effect of curcumin or lycopene with irradiation upon oral squamous cell carcinoma cells. Oral Dis 2013, 19(5):465-472.
  • [159]Zu K, Mucci L, Rosner BA, Clinton SK, Loda M, Stampfer MJ, Giovannucci E: Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. J Natl Cancer Inst 2014, 106(2):djt430.
  • [160]Palozza P, Parrone N, Simone R, Catalano A: Role of lycopene in the control of ROS-mediated cell growth: implications in cancer prevention. Curr Med Chem 2011, 18(12):1846-1860.
  • [161]Ettorre A, Frosali S, Andreassi M, Di Stefano A: Lycopene phytocomplex, but not pure lycopene, is able to trigger apoptosis and improve the efficacy of photodynamic therapy in HL60 human leukemia cells. Exp Biol Med 2010, 235(9):1114-1125.
  • [162]Palozza P, Colangelo M, Simone R, Catalano A, Boninsegna A, Lanza P, Monego G, Ranelletti FO: Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis 2010, 31(10):1813-1821.
  • [163]Tanaka T, Shnimizu M, Moriwaki H: Cancer chemoprevention by carotenoids. Molecules 2012, 17(3):3202-3242.
  • [164]Bhuvaneswari V, Velmurugan B, Balasenthil S, Ramachandran CR, Nagini S: Chemopreventive efficacy of lycopene on 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Fitoterapia 2001, 72(8):865-874.
  • [165]Rahman MA, Amin AR, Shin DM: Chemopreventive potential of natural compounds in head and neck cancer. Nutr Cancer 2010, 62(7):973-987.
  • [166]Seren S, Lieberman R, Bayraktar UD, Heath E, Sahin K, Andic F, Kucuk O: Lycopene in cancer prevention and treatment. Am J Ther 2008, 15(1):66-81.
  • [167]Sahin K, Orhan C, Tuzcu M, Sahin N, Ali S, Bahcecioglu IH, Guler O, Ozercan I, Ilhan N, Kucuk O: Orally administered lycopene attenuates diethylnitrosamine-induced hepatocarcinogenesis in rats by modulating Nrf-2/HO-1 and Akt/mTOR pathways. Nutr Cancer 2014, 1:1.
  • [168]Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S: Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci 2014, 105(3):252-257.
  • [169]Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, van Breemen RB: Effects of lycopene on protein expression in human primary prostatic epithelial cells. Cancer Prev Res 2013, 6(5):419-427.
  • [170]Khuri FR, Lee JJ, Lippman SM, Kim ES, Cooper JS, Benner SE, Winn R, Pajak TF, Williams B, Shenouda G, Hodson I, Fu K, Shin DM, Vokes EE, Feng L, Goepfert H, Hong WK: Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck cancer patients. J Natl Cancer Inst 2006, 98(7):441-450.
  • [171]Perry CF, Stevens M, Rabie I, Yarker ME, Cochrane J, Perry E, Traficante R, Coman W: Chemoprevention of head and neck cancer with retinoids: a negative result. Arch Otolaryngol Head Neck Surg 2005, 131(3):198-203.
  • [172]Kadara H, Lacroix L, Lotan D, Lotan R: Induction of endoplasmic reticulum stress by the pro-apoptotic retinoid N-(4-hydroxyphenyl)retinamide via a reactive oxygen species-dependent mechanism in human head and neck cancer cells. Cancer Biol Ther 2007, 6(5):705-711.
  • [173]Xie H, Zhu F, Huang Z, Lee MH, Kim DJ, Li X, Lim Do Y, Jung SK, Kang S, Li H, Reddy K, Wang L, Ma W, Lubet RA, Bode AM, Dong Z: Identification of mammalian target of rapamycin as a direct target of fenretinide both in vitro and in vivo. Carcinogenesis 2012, 33(9):1814-1821.
  • [174]Lodi G, Sardella A, Bez C, Demarosi F, Carrassi A: Interventions for treating oral leukoplakia. Cochrane Database Syst Rev 2006, 4:CD001829.
  • [175]Poveda-Roda R, Bagan JV, Jimenez-Soriano Y, Diaz-Fernandez JM, Gavalda-Esteve C: Retinoids and proliferative verrucous leukoplakia (PVL). A preliminary study. Medicina oral, patologia oral y cirugia bucal 2010, 15(1):e3-e9.
  • [176]Haussler MR, Haussler CA, Bartik L, Whitfield GK, Hsieh JC, Slater S, Jurutka PW: Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev 2008, 66(10 Suppl 2):S98-S112.
  • [177]Meier JD, Enepekides DJ, Poirier B, Bradley CA, Albala JS, Farwell DG: Treatment with 1-alpha,25-dihydroxyvitamin D3 (vitamin D3) to inhibit carcinogenesis in the hamster buccal pouch model. Arch Otolaryngol Head Neck Surg 2007, 133(11):1149-1152.
  • [178]Abe M, Akeno N, Ohida S, Horiuchi N: Inhibitory effects of 1,25-dihydroxyvitamin D3 and 9-cis-retinoic acid on parathyroid hormone-related protein expression by oral cancer cells (HSC-3). J Endocrinol 1998, 156(2):349-357.
  • [179]Yang J, Ikezoe T, Nishioka C, Ni L, Koeffler HP, Yokoyama A: Inhibition of mTORC1 by RAD001 (everolimus) potentiates the effects of 1,25-dihydroxyvitamin D(3) to induce growth arrest and differentiation of AML cells in vitro and in vivo. Exp Hematol 2010, 38(8):666-676.
  • [180]Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ: 1alpha,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther 2007, 6(4):1433-1439.
  • [181]Weitsman GE, Koren R, Zuck E, Rotem C, Liberman UA, Ravid A: Vitamin D sensitizes breast cancer cells to the action of H2O2: mitochondria as a convergence point in the death pathway. Free Radic Biol Med 2005, 39(2):266-278.
  • [182]Ling MT, Luk SU, Al-Ejeh F, Khanna KK: Tocotrienol as a potential anticancer agent. Carcinogenesis 2012, 33(2):233-239.
  • [183]Kannappan R, Ravindran J, Prasad S, Sung B, Yadav VR, Reuter S, Chaturvedi MM, Aggarwal BB: Gamma-tocotrienol promotes TRAIL-induced apoptosis through reactive oxygen species/extracellular signal-regulated kinase/p53-mediated upregulation of death receptors. Mol Cancer Ther 2010, 9(8):2196-2207.
  • [184]Tiwari RV, Parajuli P, Sylvester PW: Gamma-Tocotrienol-induced autophagy in malignant mammary cancer cells. Exp Biol Med (Maywood) 2014, 239(1):33-44.
  • [185]Bi S, Liu JR, Li Y, Wang Q, Liu HK, Yan YG, Chen BQ, Sun WG: Gamma-Tocotrienol modulates the paracrine secretion of VEGF induced by cobalt(II) chloride via ERK signaling pathway in gastric adenocarcinoma SGC-7901 cell line. Toxicology 2010, 274(1–3):27-33.
  • [186]Zhang W, Negoro T, Satoh K, Jiang Y, Hashimoto K, Kikuchi H, Nishikawa H, Miyata T, Yamamoto Y, Nakano K, Yasumoto E, Nakayachi T, Mineno K, Satoh T, Sakagami H: Synergistic cytotoxic action of vitamin C and vitamin K3. Anticancer Res 2001, 21(5):3439-3444.
  • [187]Na YR, Han KC, Park H, Yang EG: Menadione and ethacrynic acid inhibit the hypoxia-inducible factor (HIF) pathway by disrupting HIF-1alpha interaction with p300. Biochem Biophys Res Commun 2013, 434(4):879-884.
  • [188]Taper HS: Altered deoxyribonuclease activity in cancer cells and its role in non toxic adjuvant cancer therapy with mixed vitamins C and K3. Anticancer Res 2008, 28(5A):2727-2732.
  • [189]Lamson DW, Gu YH, Plaza SM, Brignall MS, Brinton CA, Sadlon AE: The vitamin C:vitamin K3 system - enhancers and inhibitors of the anticancer effect. Altern Med Rev 2010, 15(4):345-351.
  • [190]Lamson DW, Plaza SM: The anticancer effects of vitamin K. Altern Med Rev 2003, 8(3):303-318.
  • [191]Beck R, Pedrosa RC, Dejeans N, Glorieux C, Leveque P, Gallez B, Taper H, Eeckhoudt S, Knoops L, Calderon PB, Verrax J: Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study. Invest New Drugs 2011, 29(5):891-900.
  • [192]Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q: High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med 2014, 6(222):222ra218.
  • [193]Kawada H, Kaneko M, Sawanobori M, Uno T, Matsuzawa H, Nakamura Y, Matsushita H, Ando K: High concentrations of L-ascorbic acid specifically inhibit the growth of human leukemic cells via downregulation of HIF-1alpha transcription. PLoS One 2013, 8(4):e62717.
  • [194]Tareen B, Summers JL, Jamison JM, Neal DR, McGuire K, Gerson L, Diokno A: A 12 week, open label, phase I/IIa study using apatone for the treatment of prostate cancer patients who have failed standard therapy. Int J Med Sci 2008, 5(2):62-67.
  • [195]Coy JF: The Usage Of Oxybenfotiamine As A Thiamin Analog In Cancer Therapy. 2014. [Personal Communication]
  • [196]Demidov LV, Manziuk LV, Kharkevitch GY, Pirogova NA, Artamonova EV: Adjuvant fermented wheat germ extract (Avemar) nutraceutical improves survival of high-risk skin melanoma patients: a randomized, pilot, phase II clinical study with a 7-year follow-up. Cancer Biother Radiopharm 2008, 23(4):477-482.
  • [197]Mueller T, Voigt W: Fermented wheat germ extract–nutritional supplement or anticancer drug? Nutr J 2011, 10:89.
  • [198]Comin-Anduix B, Boros LG, Marin S, Boren J, Callol-Massot C, Centelles JJ, Torres JL, Agell N, Bassilian S, Cascante M: Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells. J Biol Chem 2002, 277(48):46408-46414.
  • [199]Mouradian M, Kikawa KD, Dranka BP, Komas SM, Kalyanaraman B, Pardini RS: Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog 2014.
  • [200]Nikolakopoulou Z, Nteliopoulos G, Michael-Titus AT, Parkinson EK: Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2. Carcinogenesis 2013, 34(12):2716-2725.
  • [201]de Luis DA, Izaola O, Cuellar L, Terroba MC, de la Fuente B, Cabezas G: A randomized clinical trial with two doses of a omega 3 fatty acids oral and arginine enhanced formula in clinical and biochemical parameters of head and neck cancer ambulatory patients. Eur Rev Med Pharmacol Sci 2013, 17(8):1090-1094.
  • [202]Shin S, Jing K, Jeong S, Kim N, Song KS, Heo JY, Park JH, Seo KS, Han J, Park JI, Kweon GR, Park SK, Wu T, Hwang BD, Lim K: The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53. BioMed Res Int 2013, 2013:568671.
  • [203]Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Palozza P: n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 2004, 25(12):2303-2310.
  • [204]Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC: The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 2012, 7(5):e36197.
  • [205]Allen BG, Bhatia SK, Buatti JM, Brandt KE, Lindholm KE, Button AM, Szweda LI, Smith BJ, Spitz DR, Fath MA: Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 2013, 19(14):3905-3913.
  • [206]Klement RJ: Calorie or carbohydrate restriction? The ketogenic diet as another option for supportive cancer treatment. Oncologist 2013, 18(9):1056.
  • [207]Maurer GD, Brucker DP, Bahr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP, Rieger J: Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011, 11:315.
  • [208]Mavropoulos JC, Isaacs WB, Pizzo SV, Freedland SJ: Is there a role for a low-carbohydrate ketogenic diet in the management of prostate cancer? Urology 2006, 68(1):15-18.
  • [209]Otto C, Kaemmerer U, Illert B, Muehling B, Pfetzer N, Wittig R, Voelker HU, Thiede A, Coy JF: Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008, 8:122.
  • [210]Paoli A: Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health 2014, 11(2):2092-2107.
  • [211]Poff AM, Ari C, Seyfried TN, D’Agostino DP: The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 2013, 8(6):e65522.
  • [212]Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U: Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutr Metab 2011, 8(1):54.
  • [213]Schroeder U, Himpe B, Pries R, Vonthein R, Nitsch S, Wollenberg B: Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 2013, 65(6):843-849.
  • [214]Seyfried TN, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P: Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer? Epilepsy Res 2012, 100(3):310-326.
  • [215]Klement RJ, Kammerer U: Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab 2011, 8:75.
  • [216]Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfurst B, Walenta S, Mueller-Klieser W, Graler M, Hummel M, Keller U, Buck AK, Dorken B, Willmitzer L, Reimann M, Kempa S, Lee S, Schmitt CA: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 2013, 501:421-425.
  • [217]Onodera Y, Nam JM, Bissell MJ: Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest 2014, 124(1):367-384.
  • [218]Danial NN, Hartman AL, Stafstrom CE, Thio LL: How does the ketogenic diet work? Four potential mechanisms. J Child Neurol 2013, 28(8):1027-1033.
  • [219]Ziech D, Anestopoulos I, Hanafi R, Voulgaridou GP, Franco R, Georgakilas AG, Pappa A, Panayiotidis MI: Pleiotrophic effects of natural products in ROS-induced carcinogenesis: the role of plant-derived natural products in oral cancer chemoprevention. Cancer Lett 2012, 327(1–2):16-25.
  • [220]Lee KW, Bode AM, Dong Z: Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer 2011, 11(3):211-218.
  • [221]Tan AC, Konczak I, Sze DM, Ramzan I: Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 2011, 63(4):495-505.
  • [222]Pratheeshkumar P, Sreekala C, Zhang Z, Budhraja A, Ding S, Son YO, Wang X, Hitron A, Hyun-Jung K, Wang L, Lee JC, Shi X: Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anti Cancer Agents Med Chem 2012, 12(10):1159-1184.
  • [223]Maund SL, Cramer SD: The tissue-specific stem cell as a target for chemoprevention. Stem Cell Rev 2011, 7(2):307-314.
  • [224]Ramos S: Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 2008, 52(5):507-526.
  • [225]Li Y, Wicha MS, Schwartz SJ, Sun D: Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011, 22(9):799-806.
  • [226]Pan JS, Hong MZ, Ren JL: Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol 2009, 15(14):1702-1707.
  • [227]Cooke MS, Evans MD, Dizdaroglu M, Lunec J: Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003, 17(10):1195-1214.
  • [228]Lai CH, Huang SF, Liao CT, Chen IH, Wang HM, Hsieh LL: Clinical significance in oral cavity squamous cell carcinoma of pathogenic somatic mitochondrial mutations. PLoS One 2013, 8(6):e65578.
  • [229]Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, Freeman R, Swettenham E, Valis K, Liu J, Zobalova R, Turanek J, Spitz DR, Domann FE, Scheffler IE, Ralph SJ, Neuzil J: Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 2008, 27(31):4324-4335.
  • [230]Gledhill JR, Montgomery MG, Leslie AG, Walker JE: Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 2007, 104(34):13632-13637.
  • [231]Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F: Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012, 122(6):253-270.
  • [232]Jalving M, Gietema JA, Lefrandt JD, de Jong S, Reyners AK, Gans RO, de Vries EG: Metformin: taking away the candy for cancer? Eur J Cancer 2010, 46(13):2369-2380.
  • [233]Vitale-Cross L, Molinolo AA, Martin D, Younis RH, Maruyama T, Patel V, Chen W, Schneider A, Gutkind JS: Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer Prev Res 2012, 5(4):562-573.
  • [234]Varoni EM, Lodi G, Sardella A, Carrassi A, Iriti M: Plant polyphenols and oral health: old phytochemicals for new fields. Curr Med Chem 2012, 19(11):1706-1720.
  • [235]Dionne KR, Warnakulasuriya S, Binti Zain R, Cheong SC: Potentially malignant disorders of the oral cavity: Current practice and future directions in the clinic and laboratory. Int J Cancer 2014.
  • [236]Li N, Sun Z, Han C, Chen J: The chemopreventive effects of tea on human oral precancerous mucosa lesions. Proc Soc Exp Biol Med 1999, 220(4):218-224.
  • [237]Avril NE, Weber WA: Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 2005, 43(1):189-204.
  • [238]Abdelsalam M, Bazarbashi S, Abouzied M, Amin T, Soudy H, Rahal M, Darwish A: Whole body 18 F-FDG PET predicts progression free and overall survival in squamous cell carcinoma of the esophagus: results of a prospective trial. Hematol Oncol Stem Cell Ther 2010, 3(4):179-184.
  • [239]Brucher BL, Swisher SG, Konigsrainer A, Zieker D, Hartmann J, Stein H, Kitagawa Y, Law S, Ajani JA: Response to preoperative therapy in upper gastrointestinal cancers. Ann Surg Oncol 2009, 16(4):878-886.
  • [240]Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, Peters EC, Driggers EM, Hsieh-Wilson LC: Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 2012, 337(6097):975-980.
  • [241]Mor I, Cheung EC, Vousden KH: Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 2011, 76:211-216.
  • [242]Doherty JR, Cleveland JL: Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013, 123(9):3685-3692.
  • [243]Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, Davis-Malesevich M, Priebe W, Myers JN: Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer 2011, 117(13):2926-2938.
  • [244]Mertens-Talcott SU, Percival SS: Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 2005, 218(2):141-151.
  • [245]Vander Broek R, Snow GE, Chen Z, Van Waes C: Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-kappaB signaling. Oral Oncol 2013.
  • [246]Wirth LJ: Chemoprevention of squamous cell carcinoma of the head and neck: no time to lose momentum. Cancer Prev Res (Phila) 2014, 7(3):279-282.
  • [247]Jameson MJ, Taniguchi LE, VanKoevering KK, Stuart MM, Francom CR, Mendez RE, Beckler AD, Carlson HT, Thomas CY, Khalil AA: Activation of the insulin-like growth factor-1 receptor alters p27 regulation by the epidermal growth factor receptor in oral squamous carcinoma cells. J Oral Pathol Med 2013, 42(4):332-338.
  • [248]Poff AM, Ari C, Arnold P, Seyfried TN, D’Agostino DP: Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer 2014, 1:1.
  • [249]Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 2010, 107(5):2037-2042.
  • [250]Granchi C, Paterni I, Rani R, Minutolo F: Small-molecule inhibitors of human LDH5. Future Med Chem 2013, 5(16):1967-1991.
  • [251]Oyedotun KS, Lemire BD: The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. J Biol Chem 2004, 279(10):9424-9431.
  • [252]Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984, 133(4):1710-1715.
  文献评价指标  
  下载次数:84次 浏览次数:53次