期刊论文详细信息
EvoDevo
Heterochrony repolarized: a phylogenetic analysis of developmental timing in plethodontid salamanders
Grant A Robison1  Michael A Steffen1  Ronald M Bonett1 
[1] Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
关键词: Progenesis;    Paedomorphosis;    Neoteny;    Life history;    Evolution;    Caudata;    Ancestral state reconstruction;   
Others  :  1093488
DOI  :  10.1186/2041-9139-5-27
 received in 2014-05-27, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

Disentangling evolutionary shifts in developmental timing (heterochony) is dependent upon accurate estimates of ancestral patterns. However, many classic assessments of heterochronic patterns predate robust phylogenetic hypotheses and methods for trait reconstruction, and therefore may have been polarized with untested ‘primitive’ conditions. Here we revisit the heterochronic modes of development that underlie the evolution of metamorphosis, maturation, and paedomorphosis in plethodontid salamanders. We focus on the tribe Spelerpini, which is a diverse clade that exhibits tremendous variation in timing of metamorphosis and maturation, as well as multiple independent instances of larval form paedomorphosis. Based on morphology and biogeography, early investigators concluded that the most recent common ancestors of plethodontids, and also spelerpines, were large salamanders, with very long larval periods and late maturation times. This prevailing assumption influenced subsequent heterochronic assessments, which concluded that most modern spelerpines (with shorter larval periods) were derived through multiple independent accelerations in larval development. It was also concluded that most occurrences of larval form paedomorphosis in this clade resulted from progenesis (acceleration of gonadal development relative to metamorphosis).

Results

By reconstructing the time to metamorphosis on a molecular-based phylogeny of plethodontids, we find that ancestral spelerpines likely had relatively shorter larval periods than previously proposed. Taken together with the credibility interval from our ancestral state estimation we show that very long larval periods are likely derived decelerations, only a few lineages have undergone appreciable accelerations in metamorphic timing, and the remaining taxa have lower probabilities of being different than the ancestral condition (possibly due to stasis). Reconstructing maturation age across nodes concomitant with the evolution of larval form paedomorphosis in one large radiation does not show clear evidence of progenesis, but more likely indicates a case of neoteny (delayed metamorphosis).

Conclusions

This study demonstrates cases in plethodontid salamanders where phylogenetic-based character reconstructions reject previously hypothesized ancestral life history conditions. As a result, several prior hypotheses of heterochronic evolution in this family are reversed.

【 授权许可】

   
2014 Bonett et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150130163554689.pdf 2002KB PDF download
Figure 7. 109KB Image download
Figure 6. 113KB Image download
Figure 5. 114KB Image download
Figure 4. 59KB Image download
Figure 3. 161KB Image download
Figure 2. 115KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Gould SJ: Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press; 1977.
  • [2]Alberch P, Gould SJ, Oster GF, Wake DB: Size and shape in ontogeny and phylogeny. Paleobiology 1979, 5:296-317.
  • [3]Raff RA, Wray GA: Heterochrony: developmental mechanisms and evolutionary results. J Evol Biol 1989, 2:409-434.
  • [4]McKinney ML, McNamara KJ: Heterochrony, the Evolution of Ontogeny. New York, NY: Plenum Press; 1991.
  • [5]Zelditch ML, Fink WM: Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 1996, 22:241-254.
  • [6]Wake DB, Larson A: Multidimensional analysis of an evolving lineage. Science 1987, 238:42-48.
  • [7]Ryan TJ, Semlitsch RD: Intraspecific heterochrony and life history evolution: decoupling somatic and sexual development in a facultatively paedomorphic salamander. Proc Natl Acad Sci USA 1998, 95:5643-5648.
  • [8]Denöel M, Joly P: Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia: Caudata). Proc R Soc Lond Ser B 2000, 267:1481-1485.
  • [9]Bruce RC: Theory of complex life cycles: application in plethodontid salamanders. Herpetol Monogr 2005, 19:180-207.
  • [10]Buckley D, Alcobendas M, Garcia-Paris M, Wake MH: Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol Dev 2007, 9:105-115.
  • [11]Fink WL: The conceptual relationship between ontogeny and phylogeny. Paleobiology 1982, 8:254-264.
  • [12]Klingenberg CP, Spence JR: Heterochrony and allometry: lessons from the water strider genus Limnoporus. Evolution 1993, 47:1834-1853.
  • [13]Velhagen WAJ: Analyzing developmental sequences using sequences units. Syst Biol 1997, 46:204-210.
  • [14]Nunn CL, Smith KK: Statistical analyses of developmental sequences: The craniofacial region in marsupial and placental mammals. Am Nat 1998, 152:82-101.
  • [15]Smith KK: Time’s arrow: heterochrony and the evolution of development. Int J Dev Biol 2003, 47:613-621.
  • [16]Jeffery JE, Bininda-Emonds ORP, Coates MI, Richardson MK: A new technique for identifying sequence heterochrony. Syst Biol 2005, 54:230-240.
  • [17]Germain D, Laurin M: Evolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methods. Evol Dev 2009, 11:170-190.
  • [18]Maxwell E, Harrison LB: Methods for the analysis of developmental sequence data. Evol Dev 2009, 11:109-119.
  • [19]Geiger M, Forasiepi AM, Koyabu D, Sánchez-Villagra MR: Heterochrony and post-natal growth in mammals – an examination of growth plates in limbs. J Evol Biol 2013, 27:98-115.
  • [20]Hanken J: Is heterochrony still an effective paradigm for contemporary studies of Evo-Devo? In Conceptual change in biology: scientific and philosophical perspectives on evolution and development. Edited by Love A. New York, NY: Springer-Verlag; 2014.
  • [21]AmphibiaWeb: Information on Amphibian Biology and Conservation. Berkeley, CA: AmphibiaWeb; 2014. [http://amphibiaweb.org/ webcite]
  • [22]Duellman WE, Trueb LT: Biology of Amphibians. Baltimore, MD: The Johns Hopkins University Press; 1986.
  • [23]Hanken J: Life history and morphological evolution. J Evol Biol 1992, 5:549-557.
  • [24]Wiens JJ, Bonett RM, Chippindale PT: Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 2005, 54:91-110.
  • [25]Bonett RM, Steffen MA, Lambert SM, Wiens JJ, Chippindale PT: Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis. Evolution 2014, 68:466-482.
  • [26]Ryan TJ, Bruce RC: Life history evolution and adaptive radiation of hemidactyliine salamanders. In The Biology of Plethodontid Salamanders. Edited by Bruce RC, Jaeger RG, Houck LD. New York, NY: Kluwer Academic, Plenum Publishers; 2000:303-325.
  • [27]Reilly SM, Wiley EO, Meinhardt D: An integrative approach to heterochrony: distinguishing intraspecific and interspecific phenomena. Biol J Linn Soc 1997, 60:119-143.
  • [28]Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ: Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 2004, 58:2809-2822.
  • [29]Wilder IW, Dunn ER: The correlation of lunglessness in salamanders with a mountain brook habitat. Copeia 1920, 84:63-68.
  • [30]Dunn ER: The Salamanders of the family Plethodontidae. Smith College: Northampton, MA; 1926.
  • [31]Wake DB: Comparative osteology and evolution of the lungless salamanders, Family Plethodontidae. Mem So Cal Acad Sci 1966, 4:1-111.
  • [32]Bruce RC: Variation in the life cycle of the salamander Gyrinophilus porphyriticus. Herpetologica 1972, 28:230-245.
  • [33]Bruce RC: Life-history patterns of the salamander Gyrinophilus porphyriticus in the Cowee Mountains, North Carolina. Herpetologica 1978, 34:53-64.
  • [34]Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL: Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci USA 2004, 101:13820-13825.
  • [35]Kerney RR, Blackburn DC, Müller H, Hanken J: Do larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus. Evolution 2012, 66:252-262.
  • [36]Tilley SG: Life histories and comparative demography of two salamander populations. Copeia 1980, 1980:806-821.
  • [37]Bruce RC: An explanation for differences in body size between two desmognathine salamanders. Copeia 1990, 1990:1-9.
  • [38]Steffen MA, Irwin KJ, Blair AL, Bonett RM: Larval masquerade: a new species of paedomorphic salamander (Caudata: Plethodontidae: Eurycea) from the Ouachita Mountains of North America. Zootaxa 2014, 3786:423-442.
  • [39]Min M-S, Yang SY, Bonett RM, Vieites DR, Brandon RA, Wake DB: Discovery of the first Asian plethodontid salamander. Nature 2005, 435:87-90.
  • [40]Mueller RL: Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Syst Biol 2006, 55:289-300.
  • [41]Vieites DR, Min M-S, Wake DB: Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci USA 2007, 104:19903-19907.
  • [42]Kozak KH, Mendyk RW, Wiens JJ: Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in co-existing clades of North American salamanders. Evolution 2009, 63:1769-1784.
  • [43]Pyron RA, Wiens JJ: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogent Evol 2011, 2011:543-583.
  • [44]Wiens JJ, Engstrom TN, Chippindale PT: Rapid diversification, incomplete isolation, and the “speciation clock” in North American salamanders (genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 2006, 60:2585-2603.
  • [45]Nylander JAA: MrModeltest v. 2.2. Uppsala: Evolutionary Biology Centre, Uppsala University; 2004.
  • [46]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
  • [47]Boardman GS, Schubert BW: First Mio-Pliocene salamander fauna from the southern Appalachians. Palaeontologia Electronica 2011, 14:16A.
  • [48]Holman JA: Fossil salamanders of North America. Bloomington, IN: Indiana University Press; 2006.
  • [49]Wiens JJ: Global patterns of species richness and diversification in amphibians. Am Nat 2007, 170:S86-S106.
  • [50]Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD, Guillaume K, Moriau L, Bossuyt F: Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci USA 2007, 104:887-892.
  • [51]Zhang P, Wake DB: Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2009, 53:492-508.
  • [52]Rambaut A, Drummond AJ: Tracer v. 1.5. 2007. [http://beast.bio.ed.ac.uk/Tracer webcite]
  • [53]Pagel M, Meade A: BayesTraits v. 2.0. Reading: University of Reading; 2013. [http://www.evolution.rdg.ac.uk webcite]
  • [54]Pagel M, Meade A, Barker D: Bayesian estimation of ancestral character states on phylogenies. Syst Biol 2004, 53:673-684.
  • [55]Burnham KB, Anderson D: Model Selection and Multi-Model Inference: A practical Information Theoretic Approach. 2nd edition. New York, NY: Springer-Verlag; 2002.
  • [56]Revell LJ: Phytools: Phylogenetic Tools for Comparative Biology. Boston, MA: University of Massachusetts; 2012. http://faculty.umb.edu/liam.revell/phytools/ webcite
  • [57]Smith KK: Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 2001, 73:169-186.
  • [58]Bruce RC: Evolution of paedomorphosis in salamanders of the genus Gyrinophilus. Evolution 1979, 33:998-1000.
  • [59]Bruce RC: Population structure, life history, and evolution of paedogenesis in the salamander Eurycea neotenes. Copeia 1976, 1976:242-249.
  • [60]Sweet SS: Natural metamorphosis in Eurycea neotenes and the generic allocation of Texas Eurycea (Amphibia; Plethodontidae). Herpetologica 1977, 33:364-375.
  • [61]Lamb T, Beamer DA: Digits lost or gained? Evidence for pedal evolution in the dwarf salamander complex (Eurycea, Plethodontidae). PLoS ONE 2012, 7:e37544.
  • [62]Collazo A, Marks SB: Development of Gyrinophilus porphyriticus: Identification of the ancestral developmental pattern in the salamander family Plethodontidae. J Exp Zool 1994, 268:239-258.
  • [63]Wake DB, Hanken J: Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution, and phylogenesis? Int J Dev Biol 1996, 40:859-869.
  • [64]Marks SB, Collazo A: Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table. Copeia 1998, 1998:637-648.
  • [65]Marks SB: Skull development in two plethodontid salamanders (genus Desmognathus) with different life histories. In The biology of plethodontid salamanders. Edited by Bruce RC, Jaeger RG, Houck LD. New York, NY: Kluwer Academic, Plenum Publishers; 2000:261-276.
  • [66]Deban SM, Marks SB: Metamorphosis and evolution of feeding behavior in salamanders of the family Plethodontidae. Zool J Linnean Soc 2002, 134:375-400.
  • [67]Rose CS: The developmental morphology of salamander skulls. In Amphibian biology, Vol. 5. Osteology. Edited by Heatwole H, Davies M. Baulkham Hills BC: Surrey Beatty and Sons Pty. Ltd; 2003:1686-1783.
  • [68]Wilbur HM, Collins JP: Ecological aspects of amphibian metamorphosis. Science 1973, 182:1305-1314.
  • [69]Semlitsch RD, Wilbur HM: Effects of pond drying time on metamorphosis and survival in the salamander Ambystoma talpoideum. Copeia 1988, 1988:978-983.
  • [70]Denver RJ, Mirhadi N, Phillips M: Adaptive plasticity in amphibian metamorphosis: response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology 1998, 79:1859-1872.
  • [71]Newman RA: Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level. Oecologia 1998, 115:9-16.
  • [72]Beachy CK, Bruce RC: Lunglessness in plethodontid salamanders is consistent with the hypothesis of a mountain stream origin: a response to Ruben and Boucot. Am Nat 1992, 139:839-847.
  • [73]Voss SR: The relationship between stream order and length of larval period in the salamander Eurycea wilderae. Copeia 1993, 1993:736-742.
  • [74]Beachy CK: Effects of larval growth history on metamorphosis in a stream-dwelling salamander (Desmognathus ochrophaeus). J Herpetol 1995, 29:375-382.
  • [75]Camp CD, Marshall JL, Austin RM Jr: The evolution of adult body size in black-bellied salamanders (Desmognathus quadramaculatus complex). Can J Zool 2000, 78:1712-1722.
  • [76]Freeman SL, Bruce RC: Larval period and metamorphosis of the three-lined salamander, Eurycea guttolineata (Amphibia: Plethodontidae), in the Chattooga River watershed. Am Midl Nat 2001, 145:194-200.
  • [77]Hickerson C-AM, Barker EL, Beachy CK: Determinants of metamorphic timing in the blackbellied salamander, Desmognathus quadramaculatus. Southeast Nat 2005, 4:33-50.
  • [78]Trapido H, Clausen RT: The larvae of Eurycea bislineata major. Copeia 1940, 1940:244-246.
  • [79]Bahret R: Ecology of lake dwelling Eurycea bislineata in the Shawangunk Mountains, New York. J Herpetol 1996, 30:399-401.
  • [80]Andrews RM, Brandley MC, Greene VW: Developmental sequences of squamate reptiles are taxon specific. Evol Dev 2013, 5:326-343.
  • [81]Wake MH, Hanken J: Development of the skull of Dermophis mexicanus (Amphibia: Gymnophiona) with comments on skull kinesis and amphibian relationships. J Morph 1982, 173:203-223.
  • [82]Slater G, Harmon L, Alfaro M: Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 2012, 66:3931-3944.
  • [83]Slater GL: Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol Evol 2013, 4:734-744.
  • [84]Elliot MG, Mooers AØ: Inferring ancestral states without assuming neutrality or gradualism using a stable model of continuous character evolution. 2013. arXiv:1302.5104
  文献评价指标  
  下载次数:46次 浏览次数:10次