Lipids in Health and Disease | |
The autotaxin-lysophosphatidic acid–lysophosphatidic acid receptor cascade: proposal of a novel potential therapeutic target for treating glioblastoma multiforme | |
Sadaharu Tabuchi1  | |
[1] Department of Neurosurgery, Tottori Prefectural Central Hospital, 730 Ezu, Tottori 680-0901, Japan | |
关键词: Therapy; Inhibitor; Antagonist; Migration; Invasion; Angiogenesis; Glioblastoma; Cancer; Lysophosphatidic acid receptor; Autotaxin; | |
Others : 1214326 DOI : 10.1186/s12944-015-0059-5 |
|
received in 2015-01-22, accepted in 2015-06-12, 发布年份 2015 | |
【 摘 要 】
Glioblastoma multiforme (GBM) is the most malignant tumor of the central nervous system (CNS). Its prognosis is one of the worst among all cancer types, and it is considered a fatal malignancy, incurable with conventional therapeutic strategies. As the bioactive multifunctional lipid mediator lysophosphatidic acid (LPA) is well recognized to be involved in the tumorigenesis of cancers by acting on G-protein-coupled receptors, LPA receptor (LPAR) antagonists and LPA synthesis inhibitors have been proposed as promising drugs for cancer treatment. Six LPARs, named LPA 1–6 , are currently recognized. Among them, LPA 1is the dominant LPAR in the CNS and is highly expressed in GBM in combination with the overexpression of autotaxin (ATX), the enzyme (a phosphodiesterase, which is a potent cell motility-stimulating factor) that produces LPA.
Invasion is a defining hallmark of GBM. LPA is significantly related to cell adhesion, cell motility, and invasion through the Rho family GTPases Rho and Rac. LPA 1is responsible for LPA-driven cell motility, which is attenuated by LPA 4 . GBM is among the most vascular human tumors. Although anti-angiogenic therapy (through the inhibition of vascular endothelial growth factor (VEGF)) was established, sufficient results have not been obtained because of the increased invasiveness triggered by anti-angiogenesis. As both ATX and LPA play a significant role in angiogenesis, similar to VEGF, inhibition of the ATX/LPA axis may be beneficial as a two-pronged therapy that includes anti-angiogenic and anti-invasion therapy. Conventional approaches to GBM are predominantly directed at cell proliferation. Recurrent tumors regrow from cells that have invaded brain tissues and are less proliferative, and are thus quite resistant to conventional drugs and radiation, which preferentially kill rapidly proliferating cells. A novel approach that targets this invasive subpopulation of GBM cells may improve the prognosis of GBM. Patients with GBM that contacts the subventricular zone (SVZ) have decreased survival. A putative source of GBM cells is the SVZ, the largest area of neurogenesis in the adult human brain. GBM stem cells in the SVZ that are positive for the neural stem cell surface antigen CD133 are highly tumorigenic and enriched in recurrent GBM. LPA 1expression appears to be increased in these cells. Here, the author reviews research on the ATX/LPAR axis, focusing on GBM and an ATX/LPAR-targeted approach.
【 授权许可】
2015 Tabuchi.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150624100619128.pdf | 457KB | download |
【 参考文献 】
- [1]Stupp R, Hegi ME, Mason WP, van den Bnet MJ, Taphoorn MJ, Janzer RC et al.. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10(5):459-66.
- [2]Burger PC, Dubois PJ, Schold SC, Smith KR, Odom GL, Crafts DC et al.. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg. 1983; 58(2):159-69.
- [3]Wolff M, Boker DK. Immunohistochemical demonstration of immunogloblins and albumin in human brain tumors. Clin Neuropathol. 1989; 8(2):72-8.
- [4]Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, Kitayama J et al.. Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem. 2006; 281(25):17492-500.
- [5]Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC et al.. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003; 5(2):79-88.
- [6]Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013; 310(17):1842-50.
- [7]Weinberg RA. The rational treatment of cancer. In: The biology of cancer. 2nd ed. Taylor & Francis Group, New York and London; 2014: p.797-876.
- [8]Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003; 3(8):582-91.
- [9]Houben AJ, Moolenaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 2011; 30(3–4):557-65.
- [10]Goetzl EJ, Graeler M, Huang MC, Shankar G. Lysophospholipid growth factors and their G protein-coupled receptors in immunity, coronary artery disease, and cancer. ScientificWorldJournal. 2002; 2:324-38.
- [11]Rother E, Brandl R, Baker DL, Goyal P, Gebhard H, Tigyi G et al.. Subtype-selective antagonists of lysophosphatidic acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques. Circulation. 2003; 108(6):741-7.
- [12]Shi J, Dong Y, Cui MZ, Xu X. Lysophosphatidic acid induces increased BACE1 expression and Abeta formation. Biochim Biophys Acta. 2013; 1832(1):29-38.
- [13]Blumberg HP, Kaufman J, Martin A, Charney DS, Krystal JH, Peterson BS. Significance of adolescent neurodevelopment for the neural circuitry of bipolar disorder. Ann N Y Acad Sci. 2004; 1021:376-83.
- [14]Lencz T, Cornblatt B, Bilder RM. Neurodevelopmental models of schizophrenia: pathophysiologic synthesis and directions for intervention research. Psychopharmacol Bull. 2001; 35(1):95-125.
- [15]Li ZG, Yu ZC, Wang DZ, Ju WP, Zhan X, Wu QZ et al.. Influence of acetylsalicylate on plasma lysophosphatidic acid level in patients with ischemic cerebral vascular diseases. Neurol Res. 2008; 30(4):366-9.
- [16]Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW et al.. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med. 2011; 3(99):99ra87.
- [17]Liu S, Murph M, Panupinthu N, Mills GB. ATX-LPA receptor axis in inflammation and cancer. Cell Cycle. 2009; 8(22):3695-701.
- [18]Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K et al.. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem. 2002; 277(42):39436-42.
- [19]Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol. 1996; 135(4):1071-83.
- [20]Choi JW, Chun J. Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta. 2013; 1831(1):20-32.
- [21]Stoddard NC, Chun J. Promising pharmacological directions in the world of lysophosphatidic acid signaling. Biomol Ther (Seoul). 2015; 23(1):1-11.
- [22]Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, strucrually distant from the Edg family. J Biol Chem. 2003; 278(28):25600-6.
- [23]Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International union of basic and clinical pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev. 2010; 62(4):579-87.
- [24]Das AK, Hajra AK. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids. 1989; 24(4):329-33.
- [25]Thomson FJ, Perkins L, Ahern D, Clark M. Identification and characterization of a lysophosphatidic acid receptor. Mol Pharmacol. 1994; 45(4):718-23.
- [26]van der Bend RL, Brunner J, Jalink K, van Corven EJ, Moolenaar WH, van Blitterswijk WJ. Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. EMBO J. 1992; 11(7):2495-501.
- [27]Thompson FJ, Clark MA. Purification of a lysophosphatidic acid-hydrolysing lysophospholipase from rat brain. Biochem J. 1994; 300(Pt2):457-61.
- [28]Jalink K, van Corven EJ, Hengeveld T, Morii N, Narumiya S, Moolenaar WH. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol. 1994; 126(3):801-10.
- [29]Nishikawa T, Tomori Y, Yamashita S, Shimizu S. Inhibition of Na+, K+−ATPase activity by phospholipase A2 and several lysophospholipids: possible role of phospholipase A2 in noradrenaline release from cerebral cortical synaptosomes. J Pharm Pharmacol. 1989; 41(7):450-8.
- [30]Shiono S, Kawamoto K, Yoshida N, Kondo T, Inagami T. Neurotransmitter release from lysophosphatidic acid stimulated PC12 cells: involvement of lysophosphatidic acid receptors. Biochem Biophys Res Commun. 1993; 193(2):667-73.
- [31]Smalheiser NR, Ali JY. Acute neurite retraction triggered by lysophosphatidic acid: timing of the inhibitory effects of genistein. Brain Res. 1994; 660(2):309-18.
- [32]Tigyi G, Miledi R. Lysophosphatidates bound to serum albumin active membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J Biol Chem. 1992; 267(30):21360-7.
- [33]Keller JN, Steiner MR, Mattson MP, Steiner SM. Lysophosphatidic acid decreases glutamate and glucose uptake by astrocytes. J Neurochem. 1996; 67(6):2300-5.
- [34]Tabuchi S, Kume K, Aihara M, Ishii S, Mishina M, Shimizu T. Lipid mediators modulate NMDA receptor currents in a Xenopus oocyte expression system. Neurosci Lett. 1997; 237(1):13-6.
- [35]Tabuchi S, Kume K, Shimizu T. Effect of lysophosphatidic acid (LPA) on the central nervous system, primary culture of the rat brain. Neurosci Res. 1997; 28:S102.
- [36]Tabuchi S, Kume K, Aihara M, Shimizu T. Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Neurochem Res. 2000; 25(5):573-82.
- [37]Rao TS, Lariosa-Willingham KD, Lin FF, Palfreyman EL, Yu N, Chun J et al.. Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res. 2003; 990(1–2):182-94.
- [38]Sorensen SD, Nicole O, Peavy RD, Montoya LM, Lee CJ, Murphy TJ et al.. Common signaling pathways link activation of murin PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol Pharmacol. 2003; 64(5):1199-209.
- [39]Shano S, Moriyama R, Chun J, Fukushima N. Lysophosphatidic acid stimulates astrocyte proliferation through LPA1. Neurochem Int. 2003; 52(1–2):216-20.
- [40]Goldshmit Y, Munro K, Leong SY, Pebay A, Turnley AM. LPA receptor expression in the central nervous system in health and following injury. Cell Tissue Res. 2010; 341(1):23-32.
- [41]Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J. 1993; 291(Pt3):677-80.
- [42]Tigyi G, Hong L, Yakubu M, Parfenova H, Shibata M, Leffler CW. Lysophosphatidic acid alters cerebrovascular reactivity in piglets. Am J Physiol. 1995; 268(5 Pt2):H2048-55.
- [43]Manning TJ, Parker JC, Sontheimer H. Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton. 2000; 45(3):185-99.
- [44]Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E et al.. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem. 1992; 267(4):2524-9.
- [45]Nishimasu H, Okudaira S, Hama K, Mihara E, Dohmae N, Inoue A et al.. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol. 2011; 18(2):205-12.
- [46]van Meeteren LA, Moolenaar WH. Regulation and biological activities of the autotaxin-LPA axis. Prog Lipid Res. 2007; 46(2):145-60.
- [47]Federico L, Pamuklar Z, Smyth SS, Morris AJ. Therapeutic potential of autotaxin/lysophospholipase D inhibitors. Curr Drug Targets. 2008; 9(8):698-708.
- [48]Yang Y, Mou L, Liu N, Tsao MS. Autotaxin expression in non-small-cell lung cancer. Am J Respir Cell Mol Biol. 1999; 21(2):216-22.
- [49]Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A et al.. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res. 1995; 1(10):1223-32.
- [50]Yang SY, Lee J, Park CG, Kim S, Hong S, Chung HC et al.. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin Exp Metastasis. 2002; 19(7):603-8.
- [51]Baumforth KR, Flavell JR, Reynolds GM, Davies G, Pettit TR, Wei W et al.. Induction of autotaxin by the Epstein-Barr virus promotes the growth and survival of Hodgkin lymphoma cells. Blood. 2005; 106(6):2138-46.
- [52]Masuda A, Nakamura K, Izutsu K, Igarashi K, Ohkawa R, Jona M et al.. Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br J Haematol. 2008; 143(1):60-70.
- [53]Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS et al.. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005; 7(1):7-16.
- [54]Braddock DT. Autotaxin and lipid signaling pathways as anticancer targets. Curr Opin Investig Drugs. 2010; 11(6):629-37.
- [55]Bhave SR, Dadey DY, Karvas RM, Ferraro DJ, Kotipatruni RP, Jaboin JJ et al.. Autotaxin inhibition with PF-8380 enhances the radiosensitivity of human and murine glioblastoma cell lines. Front Oncol. 2013; 3:236.
- [56]Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol. 2009; 5(11):610-20.
- [57]Del Maestro RF, Megyesi JF, Farrell CL. Mechanisms of tumor-associated edema: a review. Can J Neurol Sci. 1990; 17(2):177-83.
- [58]Liwnicz BH, Wu SZ, Tew JM. The relationship between the capillary structure and hemorrhage in gliomas. J Neurosurg. 1987; 66(4):536-41.
- [59]Cha S, Johnson G, Wadghiri YZ, Jin O, Babb J, Zagzag D et al.. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med. 2003; 49(5):848-55.
- [60]Brat DJ. Glioblastoma: biology, genetics, and behavior. Am Soc Clin Oncol Educ Book. 2012;102–107.
- [61]Pamuklar Z, Federico L, Liu S, Umezu-Goto M, Dong A, Panchatcharam M et al.. Autotaxin/lysophospholipase D and lysophosphatitic acid regulate murine hemostasis and thrombosis. J Biol Chem. 2009; 284(11):7385-94.
- [62]Mamun MH, Kamitani H, Kinoshita Y, Tabuchi S, Wasita B, Watanabe T. Cerebral ischemia promotes rich pseudopalisading necrosis in the rat C6 glioblastoma model. Neurol Med Chir (Tokyo). 2009; 49(7):294-9.
- [63]Tabuchi S, Uozumi N, Ishii S, Shimizu Y, Watanabe T, Shimizu T. Mice deficient in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. Acta Neurochir Suppl. 2003; 86:169-72.
- [64]Tabuchi S, Yamamoto Y, Watanabe T, Uozumi N, Shimizu T. Effect of bone marrow transplantation of cytosolic phospholipase A2 deficient mice in focal cerebral ischemia/reperfusion injury. J Cereb Blood Flow Metab. 2005; 25:S501.
- [65]Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al.. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996; 16(9):4604-13.
- [66]Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992; 359(6398):845-8.
- [67]Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Ann Rev Biochem. 2004; 73:321-54.
- [68]Wu PY, Lin YC, Lan SY, Huang YL, Lee H. Aromatic hydrocarbon receptor inhibits lysophsophatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells. Biochem Biophys Res Commun. 2013; 437(9):440-5.
- [69]Lee J, Park SY, Lee EK, Park CG, Chung HC, Rha SY et al.. Activation of hypoxia-inducible factor-1 alpha is necessary for lysophosphatidic acid-induced vascular endothelial growth factor expression. Clin Cancer Res. 2006; 12(21):6351-8.
- [70]Kim KS, Sengupta S, Berk M, Kwak YG, Escobar PF, Belinson J et al.. Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res. 2006; 66(16):7983-90.
- [71]Wei H, Wang F, Wang X, Yang J, Li Z, Cong X et al.. Lysophosphatidic acid promotes secretion of VEGF by increasing expression of 150-kD Oxygen-regulated protein (ORP150) in mesenchymal stem cells. Biochim Biophys Acta. 2013; 1831(8):1426-34.
- [72]Khasraw M, Simeonovic M, Grommes C. Bevacizumab for the treatment of high-grade glioma. Expert Opin Biol Ther. 2012; 12(8):1101-11.
- [73]Vredenburgh JJ, Desjardins A, Herndon JE, Marcello J, Reardon DA, Quinn JA et al.. Bevacizmab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007; 25(30):4722-9.
- [74]Schiffer D, Chio A, Giordana MT, Mauro A, Migheli A, Vigliani MC. The vascular response to tumor infiltration in malignant gliomas. Morphometric and reconstruction study. Acta Neuropathol. 1989; 77(4):369-78.
- [75]Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ et al.. Vascular apoptosis and involusion in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest. 2000; 80(6):837-49.
- [76]Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF et al.. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia. 2000; 2(4):306-14.
- [77]Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS et al.. Potent VEGF blockade causes regression of cooped vessels in a model of neuroblastoma. Proc Natl Acad Sci U S A. 2002; 99(17):11399-404.
- [78]Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D et al.. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. 2001; 61(18):6624-8.
- [79]Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP et al.. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003; 4(2):133-46.
- [80]Lamszus K, Brockmann MA, Eckerich C, Bohlen P, May C, Mangold U et al.. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial cadherin. Clin Cancer Res. 2005; 11(13):4934-40.
- [81]Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA et al.. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res. 2001; 61(18):6938-44.
- [82]Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007; 99(21):1583-93.
- [83]Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery. 1996; 39(2):235-50.
- [84]Frugier T, Crombie D, Conquest A, Tihong F, Taylor C, Kulkarni T et al.. Modulation of LPA receptor expression in the human brain following neurotrauma. Cell Mol Neurobiol. 2011; 31(4):569-77.
- [85]Harrison SM, Reavill C, Brown G, Brown JT, Cluderay JE, Crook B et al.. LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Mol Cell Neurosci. 2003; 24(4):1170-9.
- [86]Ridley AJ. Signal transduction through the GTP-binding proteins Rac and Rho. J Cell Sci Suppl. 1994; 18:127-31.
- [87]Sugimoto N, Takuwa N, Yoshioka K, Takuwa Y. Rho-dependent, Rho kinase-independent inhibitory regulation of Rac and cell migration by LPA1 receptor in Gi-inactivated CHO cells. Exp Cell Res. 2006; 312(10):1899-908.
- [88]Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999; 144(6):1235-44.
- [89]Small RK. Glial cell lineages in development and disease. In: Diseases of the nervous system: Clinical Neurobiology. Volume 1. Asburry AK, McKhann GM, McDonald WI, editors. W.B.Saunders Co, Philadelphia; 1992: p.72-86.
- [90]Hopewell JW. The subependymal plate and the genesis of gliomas. J Pathol. 1975; 117:101-3.
- [91]Vick NA, Lin M-J, Bigner DD. The role of the subependymal plate in glial tumorgenesis. Acta Neuropathol (Berl). 1977; 40:63-71.
- [92]Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al.. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006; 444(7120):756-60.
- [93]Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, DeVitis S et al.. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004; 64(19):7011-21.
- [94]Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S et al.. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007; 9(4):424-9.
- [95]Altaner C. Glioblastoma and stem cells. Neoplasma. 2008; 55(5):369-74.
- [96]Quinones-Hinojosa A, Chaichana K. The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol. 2007; 205(2):313-24.
- [97]Jafri NF, Clarke JL, Weinberg V, Barani IJ, Cha S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neurol Oncol. 2013; 15(1):91-6.
- [98]Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000; 25(1):55-7.
- [99]Savarese TM, Jang T, Low HP, Salmonsen R, Litofsky NS, Matuasevic Z et al.. Isolation of immortalized, INK4a/ARF-deficient cells from the subventricular zone after in utero N-ethyl-N-nitrosourea exposure. J Neurosurg. 2005; 102(1):98-108.
- [100]Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP et al.. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 2005; 8(2):119-30.
- [101]Aguirre A, Gallo V. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci. 2004; 24(46):10530-41.
- [102]Parsa AT, Wachhorst S, Lamborn KR, Prados MD, McDermott MW, Berger MS et al.. Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults. J Neurosug. 2005; 102(4):622-8.
- [103]Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. Relationship of glioblastoma multiform to the lateral ventricules predicts survival following tumor resection. J Neurooncol. 2008; 89(2):219-24.
- [104]Adeberg S, Bostel T, Konig L, Welzel T, Debus J, Combs SE. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol. 2014; 9:95.
- [105]Hurst JH, Mumaw J, Machacek DW, Sturkie C, Callihan P, Stice SL et al.. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology. BMC Neurosci. 2008; 9:118.
- [106]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al.. Identification of human brain tumour initiating cells. Nature. 2004; 432(7015):396-401.
- [107]Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al.. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006; 5:67.
- [108]Pebay A, Bonder CS, Pitson SM. Stem cell regulation by lysophospholipids. Prostaglandins Other Lipid Mediat. 2007; 84(3–4):83-97.
- [109]Dottori M, Leung J, Turnley AM, Pebay A. Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells. 2008; 26(5):1146-54.
- [110]Annabi B, Lachambre MP, Plouffe K, Sartelet H, Beliveau R. Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog. 2009; 48(10):910-9.
- [111]Komachi M, Sato K, Tobo M, Mogi C, Yamada T, Ohta H et al.. Orally active lysophosphatidic acid receptor antagonist attenuates pancreatic cancer invasion and metastasis in vivo. Cancer Sci. 2012; 103(6):1099-104.
- [112]Lee Z, Cheng CT, Zhang H, Subler MA, Wu J, Mukherjee A et al.. Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell. 2008; 19(12):5435-45.
- [113]Rhee HJ, Nam JS, Sun Y, Kim MJ, Choi HK, Han DH et al.. Lysophosphatidic acid stimulates cAMP accumulation and cAMP response element-binding protein phosphorylation in immortalized hippocampal progenitor cells. Neuroreport. 2006; 17(5):523-6.
- [114]Gerrard M, Robinson P. Identification of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin. Biochim Biophys Acta. 1989; 1001(3):282-5.
- [115]Xiao Y, Chen Y, Kennedy AW, Belinson J, Xu Y. Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectroscopy (ESI-MS) analyses. Ann N Y Acad Sci. 2000; 905:242-59.
- [116]Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi G. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem. 2001; 292(2):287-95.
- [117]Tokumura A, Iimori M, Nishioka Y, Kitahara M, Sakashita M, Tanaka S. Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am J Physiol. 1994; 267(1 Pt 1):C204-10.
- [118]Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A et al.. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res. 2001; 89(3):251-8.
- [119]Yoshida K, Nishida W, Hayashi K, Ohkawa Y, Ogawa A, Aoki J et al.. Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo. Circulation. 2003; 108(14):1746-52.
- [120]Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M et al.. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem. 2006; 281(35):25822-30.
- [121]Benesch MG, Tang X, Maeda T, Ohhata A, Zhao YY, Kok BP et al.. Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J. 2014; 28(6):2655-66.
- [122]Hwang SH, Lee BH, Kim HJ, Cho HJ, Shin HC, Im KS et al.. Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: involvement of autotaxin inhibition. Int J Oncol. 2013; 42(1):317-26.
- [123]Zhang H, Xu X, Gajewiak J, Tsukahara R, Fujiwara Y, Liu J et al.. Dural activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Res. 2009; 69(13):5441-9.
- [124]Schleicher SM, Thotala DK, Linkous AG, Hu R, Leahy KM, Yazlovitskaya EM et al.. Autotaxin and LPA receptors represent potential molecular targets for the radiosensitization of murine glioma through effects on tumor vasculature. PLoS One. 2011; 6(7): Article ID e22182
- [125]Panupinthu N, Lee HY, Mills GB. Lysophosphatidic acid production and action: critical new players in breast cancer initiation and progression. Br J Cancer. 2010; 102(6):941-6.
- [126]Crack PJ, Zhang M, Morganti-Kossmann MC, Morris AJ, Wojcjak JM, Fleming JK et al.. Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes. J Neuroinflammation. 2014; 11:37.
- [127]Barbayianni E, Magrioti V, Moutevelis-Minakakis P, Kokotos G. Autotaxin inhibitors: a patent review. Expert Opin Ther Pat. 2013; 23(9):1123-32.
- [128]Parrill AL. Design of anticancer lysophosphatidic acid agonists and antagonists. Future Med Chem. 2014; 6(8):871-83.
- [129]Safety and efficacy of a lysophosphatidic acid receptor antagonist in idiopathic pulmonary fibrosis (Phase 2). ClinicalTrials.gov: NCT01766817. http://clinicaltrials. gov/show/NCT01766817 webcite
- [130]Absorption, distribution, metabolism and excretion (ADME) study of BMS-986020 (Phase 1). ClinicalTrials.gov: NCT02068053. http://clinicaltrials. gov/ct2/show/NCT02068053 webcite
- [131]To evaluate the relationship between plasma drug levels and receptor binding in lung using PET (Positron Emission Tomography) in healthy volunteers (Phase 1). ClinicalTrials.gov: NCT02017730. http://clinicaltrials. gov/ct2/show/NCT02017730 webcite
- [132]Proof of biological activity of SAR100842 in systemic sclerosis (Phase 2). ClinicalTrials.gov: NCT01651143. http://clinicaltrials. gov/show/NCT01651143 webcite