期刊论文详细信息
Diagnostic Pathology
Identification of tumor epithelium and stroma in tissue microarrays using texture analysis
Johan Lundin1  Matti Pietikäinen6  Timo Ahonen2  Caj Haglund3  Stig Nordling5  Mikael Lundin4  Esa Rahtu6  Riku Turkki6  Juho Konsti4  Nina Linder4 
[1] Division of Global Health/IHCAR, Karolinska Institutet, Nobels väg 9, SE-171 77 Stockholm, Sweden;Visual Computing and Ubiquitous Imaging Research Team, Nokia Research Center, Palo Alto, CA, USA;Department of General Surgery, Helsinki University Central Hospital, PO Box 340, Haartmaninkatu 4, Helsinki, 00290 HUS, Finland;Institute for Molecular Medicine Finland (FIMM), P.O. Box 20, FI-00014 University of Helsinki, Helsinki, Finland;Department of Pathology, Helsinki University Central Hospital, Haartmaninkatu 3, Helsinki, FI-00014, Finland;Machine Vision Group, Department of Electrical and Information Engineering, University of Oulu, P.O. Box 4500, FI-90014 Oulu, Finland
关键词: Support vector machine;    Gabor;    Haralick;    Local binary patterns;    Epithelium;    Stroma;    Pattern recognition;    Texture classification;    Image analysis;   
Others  :  808144
DOI  :  10.1186/1746-1596-7-22
 received in 2011-12-22, accepted in 2012-03-02,  发布年份 2012
PDF
【 摘 要 】

Background

The aim of the study was to assess whether texture analysis is feasible for automated identification of epithelium and stroma in digitized tumor tissue microarrays (TMAs). Texture analysis based on local binary patterns (LBP) has previously been used successfully in applications such as face recognition and industrial machine vision. TMAs with tissue samples from 643 patients with colorectal cancer were digitized using a whole slide scanner and areas representing epithelium and stroma were annotated in the images. Well-defined images of epithelium (n = 41) and stroma (n = 39) were used for training a support vector machine (SVM) classifier with LBP texture features and a contrast measure C (LBP/C) as input. We optimized the classifier on a validation set (n = 576) and then assessed its performance on an independent test set of images (n = 720). Finally, the performance of the LBP/C classifier was evaluated against classifiers based on Haralick texture features and Gabor filtered images.

Results

The proposed approach using LPB/C texture features was able to correctly differentiate epithelium from stroma according to texture: the agreement between the classifier and the human observer was 97 per cent (kappa value = 0.934, P < 0.0001) and the accuracy (area under the ROC curve) of the LBP/C classifier was 0.995 (CI95% 0.991-0.998). The accuracy of the corresponding classifiers based on Haralick features and Gabor-filter images were 0.976 and 0.981 respectively.

Conclusions

The method illustrates the capability of automated segmentation of epithelial and stromal tissue in TMAs based on texture features and an SVM classifier. Applications include tissue specific assessment of gene and protein expression, as well as computerized analysis of the tumor microenvironment.

Virtual slides

The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4123422336534537 webcite

【 授权许可】

   
2012 Linder et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708141018697.pdf 862KB PDF download
Figure 7. 62KB Image download
Figure 6. 70KB Image download
Figure 5. 23KB Image download
Figure 4. 34KB Image download
Figure 3. 55KB Image download
Figure 2. 53KB Image download
Figure 1. 13KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Hassan S, Ferrario C, Mamo A, Basik M: Tissue microarrays: emerging standard for biomarker validation. Curr Opin Biotechnol 2008, 19(1):19-25.
  • [2]Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross F, Dieterich H, Moch H, Mihatsch M, et al.: Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 2001, 159(6):2249-2256.
  • [3]Rexhepaj E, Brennan DJ, Holloway P, Kay EW, McCann AH, Landberg G, Duffy MJ, Jirstrom K, Gallagher WM: Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: application to measurement of oestrogen and progesterone receptor levels in breast cancer. Breast Cancer Res 2008, 10(5):R89. BioMed Central Full Text
  • [4]Dahlman A, Rexhepaj E, Brennan DJ, Gallagher WM, Gaber A, Lindgren A, Jirstrom K, Bjartell A: Evaluation of the prognostic significance of MSMB and CRISP3 in prostate cancer using automated image analysis. Mod Pathol 2011, 24(5):708-719.
  • [5]Konsti J, Lundin M, Joensuu H, Lehtimaki T, Sihto H, Holli K, Turpeenniemi-Hujanen T, Kataja V, Sailas L, Isola J, et al.: Development and evaluation of a virtual microscopy application for automated assessment of Ki-67 expression in breast cancer. BMC Clin Pathol 2011, 11:3. BioMed Central Full Text
  • [6]Turbin DA, Leung S, Cheang MC, Kennecke HA, Montgomery KD, McKinney S, Treaba DO, Boyd N, Goldstein LC, Badve S, et al.: Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Res Treat 2008, 110(3):417-426.
  • [7]Camp RL, Chung GG, Rimm DL: Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 2002, 8(11):1323-1327.
  • [8]Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al.: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008, 14(5):518-527.
  • [9]Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, et al.: A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009, 15(1):68-74.
  • [10]Pietras K, Ostman A: Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 2010, 316(8):1324-1331.
  • [11]Mirmehdi M, Xie X, Suri J: Handbook of texture analysis. London, Uk: Imperial College Press; 2008.
  • [12]Eramian M, Daley M, Neilson D, Daley T: Segmentation of epithelium in H&E stained odontogenic cysts. J Microsc 2011, 244(3):273-292.
  • [13]Datar M, Padfield D, Cline H: Color and texture based segmentation of molecular pathology images using HSOMs. In Proceedings of 2nd Workshop on Microscopic Image Analysis with Application in Biology: 2007. NJ, USA: Piscataway; 2007:7.
  • [14]Karacali B, Tozeren A: Automated detection of regions of interest for tissue microarray experiments: an image texture analysis. BMC Med Imaging 2007, 7:2. BioMed Central Full Text
  • [15]Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN: Computer-aided Prognosis of Neuroblastoma on Whole-slide Images: classification of stromal development. Pattern Recognit 2009, 42(6):1093-1103.
  • [16]Diamond J, Anderson NH, Bartels PH, Montironi R, Hamilton PW: The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum Pathol 2004, 35(9):1121-1131.
  • [17]Di Cataldo S, Ficarra E, Acquaviva A, Macii E: Achieving the way for automated segmentation of nuclei in cancer tissue images through morphology-based approach: a quantitative evaluation. Comput Med Imag Grap 2010, 34(6):453-461.
  • [18]Ojala T, Pietikainen M, Maenpaa T: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Ieee T Pattern Anal 2002, 24(7):971-987.
  • [19]Ojala T, Pietikäinen M, Harwood D: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 1996, 29(1):51-59.
  • [20]Haralick R, Shanmugam K, Dinstein Ih: Textural features for image classification. IEEE transactions on systems, man and cybernetics 1973, 3:610-621.
  • [21]Manjunath BS, Ma WY: Texture features for browsing and retrieval of image data. Ieee T Pattern Anal 1996, 18(8):837-842.
  • [22]Linder N, Martelin E, Lundin M, Louhimo J, Nordling S, Haglund C, Lundin J: Xanthine oxidoreductase-clinical significance in colorectal cancer and in vitro expression of the protein in human colon cancer cells. Eur J Cancer 2009, 45(4):648-655.
  • [23]Gonzalez RC, Woods RE: Digital Image Processing. Upper Saddle River, New Jersey: Prentice-Hall, Inc; 2002.
  • [24]Soh LK, Tsatsoulis C: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. Ieee T Geosci Remote 1999, 37(2):780-795.
  • [25]Clausi DA: Improved texture recognition of SAR sea ice imagery by data fusion of MRF features with traditional methods. Int Geosci Remote Se 2001, 3:1170-1172.
  • [26]Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ: LIBLINEAR: a library for large linear classification. J Machine Learning Res 2008, 9:1871-1874.
  • [27]Cregger M, Berger AJ, Rimm DL: Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med 2006, 130(7):1026-1030.
  • [28]Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA: Laser capture microdissection. Science 1996, 274(5289):998-1001.
  • [29]Eroschenko VP: Atlas of Histology. Baltimore, MD 21210: Lippincott Williams & Wilkins; 2005.
  • [30]Ahonen T, Hadid A, Pietikäinen M: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans Pattern Analysis and Machine Intelligence 2006, 28(12):2037-2041.
  • [31]Mäenpää T: An iterative algorithm for fast iris detection. Advances in Biometric Person Authentication, IWBRS 2005 Proceedings, Lecture Notes in Computer Science 2005, 3781:127-134.
  • [32]Nanni L, Lumini A: Local binary patterns for a hybrid fingerprint matcher. Pattern recognition 2008, 41:3461-3466.
  • [33]Hamilton PW, Bartels PH, Thompson D, Anderson NH, Montironi R, Sloan JM: Automated location of dysplastic fields in colorectal histology using image texture analysis. J Pathol 1997, 182(1):68-75.
  • [34]Petushi S, Garcia FU, Haber MM, Katsinis C, Tozeren A: Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med Imaging 2006, 6:14. BioMed Central Full Text
  • [35]Doyle S, Agner S, Madabhushi A, feldman M, Tomaszewski J: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. IEEE Xplore 2008, 29:496-499.
  • [36]Signolle N, Revenu M, Plancoulaine B, Herlin P: Wavelet-based multiscale texture segmentation: application to stromal compartment characterization on virtual slides. Signal Processing 2010, 90:2412-2422.
  • [37]Florea F, Vertan C, Rogozan A, Bensrhair A, Darmoni S: Comparison of histogram-based feature sets for meical image modality categorization. IEEE 2005, 1:47-50.
  • [38]Nanni L, Lumini A: A reliable method for cell phenotype image classifation. Artificial intelligence in medicine 2008, 43:87-97.
  • [39]Nanni L, Lumini A, Brahnan S: Local binary pattern variants as texture descriptors for medical image analysis. Artificial intelligence in medicine 2010, 49:117-125.
  • [40]Field DJ: Relations between the Statistics of Natural Images and the Response Properties of Cortical-Cells. J Opt Soc Am A 1987, 4(12):2379-2394.
  • [41]Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, West RB, van de Rijn M, Koller D: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Science translational medicine 2011, 3(108):108-113.
  • [42]Kayser K, Radziszowski D, Bzdyl P, Sommer R, Kayser G: Towards an automated virtual slide screening: theoretical considerations and practical experiences of automated tissue-based virtual diagnosis to be implemented in the Internet. Diagn Pathol 2006, 1:10. BioMed Central Full Text
  • [43]Walkowski S, Szymas J: Quality evaluation of virtual slides using methods based on comparing common image areas. Diagn Pathol 2011, 6(Suppl 1):S14. BioMed Central Full Text
  • [44]Ilea DE, Whelan PF: Image segmentation based on the integration of colour-texture descriptors-A review. Pattern Recogn 2011, 44(10-11):2479-2501.
  文献评价指标  
  下载次数:94次 浏览次数:37次