期刊论文详细信息
Journal for ImmunoTherapy of Cancer
Inhibition of the angiopoietin/Tie2 axis induces immunogenic modulation, which sensitizes human tumor cells to immune attack
James W. Hodge1  Benedetto Farsaci1  Renee N. Donahue1  Anna R. Kwilas1  Italia Grenga1 
[1] Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Center Drive, Room 8B13 MSC 1750, Bethesda 20892, MD, USA
关键词: Immunotherapy;    Immunogenic modulation;    Tie2;    Angiopoietin;   
Others  :  1233054
DOI  :  10.1186/s40425-015-0096-7
 received in 2015-07-29, accepted in 2015-10-21,  发布年份 2015
PDF
【 摘 要 】

Background

The angiopoietin/Tie2 pathway is an attractive target for cancer therapy due to its well-known role in regulating angiogenesis. Trebananib, a recombinant peptide-Fc fusion protein, or peptibody, that binds to angiopoietin-1 (Ang1) and Ang2 to block their interaction with the Tie2 receptor, is under active clinical investigation. We investigated whether suppressing the angiopoietin/Tie2 pathway, using the preclinical version of Trebananib (mL4-3 and L1-7(N)), could increase the sensitivity of human tumor cells to immune-mediated lysis through immunogenic modulation, which would make Trebananib a promising candidate for combination with immunotherapy.

Methods

We assessed human carcinoma cells for expression and activation of Ang1 and Ang2 and their receptor tyrosine kinase Tie2. In vitro, we exposed tumor cell lines expressing Tie2 to the peptibodies mL4-3 and L1-7(N), which inhibit the binding of Ang1 and Ang2 to Tie2, and assessed the cells for changes in viability, proliferation, surface phenotype, and sensitivity to attack by antigen-specific cytotoxic T lymphocytes (CTLs).

Results

Suppression of the angiopoietin/Tie2 pathway using mL4-3 and L1-7(N) had no effect on the proliferation or viability of tumor cells. However, these inhibitors markedly altered tumor cell phenotype, rendering tumor cells significantly more sensitive to antigen-specific CTL killing. ICAM-1 was shown to be mechanistically involved in these inhibitors’ ability to sensitize tumor cells to immune-mediated attack by functional blocking studies.

Conclusion

Our findings provide a rationale for the combination of agents targeting the angiopoietin/Tie2 pathway with cancer immunotherapies.

【 授权许可】

   
2015 Grenga et al.

【 预 览 】
附件列表
Files Size Format View
20151118095531617.pdf 918KB PDF download
Fig. 5. 19KB Image download
Fig. 4. 38KB Image download
Fig. 3. 63KB Image download
Fig. 2. 53KB Image download
Fig. 1. 41KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Farsaci B, Higgins JP, Hodge JW. Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. Int J Cancer. 2012; 130(8):1948-1959.
  • [2]Bose A, Taylor JL, Alber S, Watkins SC, Garcia JA, Rini BI et al.. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int J Cancer. 2011; 129(9):2158-2170.
  • [3]Kwilas AR, Ardiani A, Donahue RN, Aftab DT, Hodge JW. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J Transl Med. 2014; 12(1):294. BioMed Central Full Text
  • [4]Fan F, Schimming A, Jaeger D, Podar K. Targeting the tumor microenvironment: focus on angiogenesis. J Oncol. 2012; 2012:281261.
  • [5]Heine A, Held SA, Bringmann A, Holderried TA, Brossart P. Immunomodulatory effects of anti-angiogenic drugs. Leukemia. 2011; 25(6):899-905.
  • [6]Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J et al.. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A. 2012; 109(43):17561-17566.
  • [7]Finke JH, Rayman PA, Ko JS, Bradley JM, Gendler SJ, Cohen PA. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J. 2013; 19(4):353-364.
  • [8]Farsaci B, Donahue RN, Coplin MA, Grenga I, Lepone LM, Molinolo AA et al.. Immune consequences of decreasing tumor vasculature with antiangiogenic tyrosine kinase inhibitors in combination with therapeutic vaccines. Cancer Immunology Res. 2014; 2(11):1090-1102.
  • [9]Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A et al.. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res: J American Assoc Cancer Res. 2008; 14(20):6674-6682.
  • [10]Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P et al.. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011; 10(12):2298-2308.
  • [11]Roy S, Narang BK, Rastogi SK, Rawal RK. A novel multiple tyrosine-kinase targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple solid tumors: cabozantinib. Anti Cancer Agents Med Chem. 2014; 15(1):37-47.
  • [12]Eklund L, Saharinen P. Angiopoietin signaling in the vasculature. Exp Cell Res. 2013; 319(9):1271-1280.
  • [13]Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H et al.. Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem. 1999; 274(43):30896-30905.
  • [14]Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V et al.. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996; 87(7):1161-1169.
  • [15]Falcon BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A et al.. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol. 2009; 175(5):2159-2170.
  • [16]Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al.. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997; 277(5322):55-60.
  • [17]Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Oncogene. 2000; 19(39):4549-4552.
  • [18]Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. J Mol Cell Biol. 2009; 29(8):2011-2022.
  • [19]Oliner J, Min H, Leal J, Yu D, Rao S, You E et al.. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell. 2004; 6(5):507-516.
  • [20]Li P, He Q, Luo C, Qian L. Diagnostic and prognostic potential of serum angiopoietin-2 expression in human breast cancer. Int J Clin Exp Pathol. 2015; 8(1):660-664.
  • [21]Blank S, Deck C, Dreikhausen L, Weichert W, Giese N, Falk C et al.. Angiogenic and growth factors in gastric cancer. J Surg Res. 2015; 194(2):420-429.
  • [22]Sallinen H, Heikura T, Koponen J, Kosma VM, Heinonen S, Yla-Herttuala S et al.. Serum angiopoietin-2 and soluble VEGFR-2 levels predict malignancy of ovarian neoplasm and poor prognosis in epithelial ovarian cancer. BMC Cancer. 2014; 14:696. BioMed Central Full Text
  • [23]Coelho AL, Araujo A, Gomes M, Catarino R, Marques A, Medeiros R. Circulating Ang-2 mRNA expression levels: looking ahead to a new prognostic factor for NSCLC [corrected]. PLoS One. 2014; 9(2): Article ID e90009
  • [24]Tabata C, Hirayama N, Tabata R, Yasumitsu A, Yamada S, Murakami A et al.. A novel clinical role for angiopoietin-1 in malignant pleural mesothelioma. Eur Respir J. 2010; 36(5):1099-1105.
  • [25]Mikami K, Tabata C, Tabata R, Nogi Y, Terada T, Honda M et al.. Clinical significance of serum angiopoietin-1 in malignant peritoneal mesothelioma. Cancer Investig. 2013; 31(8):511-515.
  • [26]Naumnik W, Naumnik B, Niewiarowska K, Ossolinska M, Chyczewska E. Angiogenic axis angiopoietin-1 and angiopoietin-2/Tie-2 in non-small cell lung cancer: a bronchoalveolar lavage and serum study. Adv Exp Med Biol. 2013; 788:341-348.
  • [27]Coxon A, Bready J, Min H, Kaufman S, Leal J, Yu D et al.. Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther. 2010; 9(10):2641-2651.
  • [28]Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M et al.. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995; 376(6535):70-74.
  • [29]Shirakawa K, Tsuda H, Heike Y, Kato K, Asada R, Inomata M et al.. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res. 2001; 61(2):445-451.
  • [30]Mitsutake N, Namba H, Takahara K, Ishigaki K, Ishigaki J, Ayabe H et al.. Tie-2 and angiopoietin-1 expression in human thyroid tumors. Thyroid : Off J American Thyroid Assoc. 2002; 12(2):95-99.
  • [31]Wang J, Wu K, Zhang D, Tang H, Xie H, Hong L et al.. Expressions and clinical significances of angiopoietin-1, −2 and Tie2 in human gastric cancer. Biochem Biophys Res Commun. 2005; 337(1):386-393.
  • [32]Lee OH, Xu J, Fueyo J, Fuller GN, Aldape KD, Alonso MM et al.. Expression of the receptor tyrosine kinase Tie2 in neoplastic glial cells is associated with integrin beta1-dependent adhesion to the extracellular matrix. MCR. 2006; 4(12):915-926.
  • [33]Murray BW, Padrique ES, Pinko C, McTigue MA. Mechanistic effects of autophosphorylation on receptor tyrosine kinase catalysis: enzymatic characterization of Tie2 and phospho-Tie2. Biochemistry. 2001; 40(34):10243-10253.
  • [34]Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN et al.. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol. 2003; 170(12):6338-6347.
  • [35]Hodge JW, Kwilas A, Ardiani A, Gameiro SR. Attacking malignant cells that survive therapy: Exploiting immunogenic modulation. Oncoimmunology. 2013; 2(12): Article ID e26937
  • [36]Hodge JW, Garnett CT, Farsaci B, Palena C, Tsang KY, Ferrone S et al.. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer. 2013; 133(3):624-636.
  • [37]Gameiro SR, Higgins JP, Dreher MR, Woods DL, Reddy G, Wood BJ et al.. Combination therapy with local radiofrequency ablation and systemic vaccine enhances antitumor immunity and mediates local and distal tumor regression. PLoS One. 2013; 8(7): Article ID e70417
  • [38]Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D et al.. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997; 277(5327):818-821.
  • [39]Mammoto T, Jiang A, Jiang E, Mammoto A. Platelet-rich plasma extract prevents pulmonary edema through angiopoietin-Tie2 signaling. Am J Respir Cell Mol Biol. 2015; 52(1):56-64.
  • [40]Tejpar S, Prenen H, Mazzone M. Overcoming resistance to antiangiogenic therapies. Oncologist. 2012; 17(8):1039-1050.
  • [41]Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem. 2001; 276(28):26516-26525.
  • [42]Slavin-Chiorini DC, Catalfamo M, Kudo-Saito C, Hodge JW, Schlom J, Sabzevari H. Amplification of the lytic potential of effector/memory CD8+ cells by vector-based enhancement of ICAM-1 (CD54) in target cells: implications for intratumoral vaccine therapy. Cancer Gene Ther. 2004; 11(10):665-680.
  • [43]Ren Z, Kang W, Wang L, Sun B, Ma J, Zheng C et al.. E2F1 renders prostate cancer cell resistant to ICAM-1 mediated antitumor immunity by NF-kappaB modulation. Mol Cancer. 2014; 13:84. BioMed Central Full Text
  • [44]Zitvogel L, Kepp O, Aymeric L, Ma Y, Locher C, Delahaye NF et al.. Integration of host-related signatures with cancer cell-derived predictors for the optimal management of anticancer chemotherapy. Cancer Res. 2010; 70(23):9538-9543.
  • [45]Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L et al.. Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res. 2007; 67(17):7941-7944.
  • [46]Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G et al.. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011; 365(26):2484-2496.
  • [47]Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H et al.. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011; 365(26):2473-2483.
  • [48]Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res. 2006; 312(5):630-641.
  • [49]Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971; 133(2):275-288.
  • [50]De Bock K, Mazzone M, Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol. 2011; 8(7):393-404.
  • [51]Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307(5706):58-62.
  • [52]Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 2013; 73(10):2943-2948.
  • [53]Kwilas AR, Donahue RN, Tsang KY, Hodge JW. Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron. 2015; 2(1):e677.
  • [54]Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst. 1995; 87(13):982-990.
  • [55]Tsang KY, Palena C, Gulley J, Arlen P, Schlom J. A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1. Clin Cancer Res: Offi J American Asso Cancer Rese. 2004; 10(6):2139-2149.
  文献评价指标  
  下载次数:4次 浏览次数:9次