期刊论文详细信息
Fluids and Barriers of the CNS
Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia
Robert A Knight3  Sukruth Shashikumar1  Varun S Nadig1  Saarang Gopinath1  James R Ewing2  Madhava P Aryal4  Kelly A Keenan1  Tavarekere N Nagaraja1 
[1] Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA;Department of Neurology, Wayne State University, Detroit, MI, USA;Department of Physics, Oakland University, Rochester, MI, USA;Present address: Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
关键词: Stroke;    Perfusion-diffusion mismatch;    Penumbra;    Brain drug delivery;    Blood–brain barrier;   
Others  :  1098254
DOI  :  10.1186/2045-8118-11-21
 received in 2014-07-08, accepted in 2014-09-19,  发布年份 2014
PDF
【 摘 要 】

Background

Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols.

Methods

Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals.

Results

The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the SDI at its maximum was significantly larger than the pixels covered by bolus maximum (p = 0.05).

Conclusions

These results demonstrate that the SDI protocol resulted in a spread of the MRCA beyond the ischemic core. Whether plasma-borne acute stroke therapeutics can be delivered to the ischemic penumbra in a similar way needs to be investigated.

【 授权许可】

   
2014 Nagaraja et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150131021508636.pdf 1780KB PDF download
Figure 5. 55KB Image download
Figure 4. 167KB Image download
Figure 3. 157KB Image download
Figure 2. 40KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hossmann K-A: Pathophysiological basis of translational stroke research. Folia Neuropathol 2009, 47:213-227.
  • [2]Lo EH: A new penumbra: transitioning from injury into repair after stroke. Nature Med 2008, 14:497-500.
  • [3]Moskowitz MA, Lo EH, Iadecola C: The science of stroke: mechanisms in search of treatments. Neuron 2010, 67:181-198.
  • [4]Michel P, Bogousslavsky J: Penumbra is brain: no excuse not to perfuse. Annal Neurol 2005, 58:661-663.
  • [5]Ginsberg MD: Current status of neuroprotection for cerebral ischemia synoptic overview. Stroke 2009, 40(suppl 1):S111-S114.
  • [6]Ginsberg MD: Invited editorial: current impediments to successful translational research in stroke. Transl Stroke Res 2010, 1:155-157.
  • [7]Pardridge WM: Drug targeting to the brain. Pharmaceut Res 2007, 24:1733-1744.
  • [8]Jahnke K, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, Muldoon LL, Neuwelt EA: Intraarterial chemotherapy and osmotic blood–brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer 2008, 112:581-588.
  • [9]Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA: Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 2001, 220:640-646.
  • [10]Kinoshita M, McDannold N, Jolesz FA, Hynynen K: Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A 2006, 103:11719-11723.
  • [11]Choi M, Ku T, Chong K, Yoon J, Choi C: Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proc Natl Acad Sci U S A 2011, 108:9256-9261.
  • [12]Balashov KE, Aung LL, Dhib-Jalbut S, Keller IA: Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging 2011, 21:202-204.
  • [13]Lehmann P, Saliou G, de Marco G, Monet P, Souraya SE, Bruniau A, Vallee JN, Ducreux D: Cerebral peritumoral oedema study: does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis? Euro J Radiol 2012, 81:522-527.
  • [14]Gerriets T, Walberer M, Ritschel N, Tschernatsch M, Mueller C, Bachmann G, Schoenburg M, Kaps M, Nedelman M: Edema formation in the hyperacute phase of ischemic stroke. Laboratory investigation. J Neurosurg 2009, 111:1036-1042.
  • [15]Kuroiwa T, Ting P, Martinez H, Klatzo I: The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 1985, 68:122-129.
  • [16]Rosenberg GS, Estrada EY, Dencoff JE: Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brains. Stroke 1998, 29:2189-2195.
  • [17]Brightman MW, Klatzo I, Olsson Y, Reese TS: The blood–brain barrier under normal and pathological conditions. J Neurol Sci 1970, 10:215-239.
  • [18]Murakami K, Kawase M, Kondo T, Chan P: Cellular accumulation of extravasated serum protein and DNA fragmentation following vasogenic edema. J Neurotrauma 1998, 15:825-835.
  • [19]Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA: Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation 2008, 15:1-14.
  • [20]Warach S, Latour LL: Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke 2004, 35(Suppl 1):2659-2661.
  • [21]Kohrmann M, Juttler E, Huttner HB, Nowe T, Schellinger PD: Acute stroke imaging for thrombolytic therapy–an update. Cerebrovasc Dis 2007, 24:161-169.
  • [22]Hjort N, Wu O, Ashkanian M, Solling C, Mouridsen K, Christensen S, Gyldensted C, Andersen G, Ostergaard L: MRI detection of early blood–brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke 2008, 39:1025-1028.
  • [23]Fenstermacher JD, Knight RA, Ewing ER, Nagaraja T, Nagesh V, Yee JS, Arniego PA: Estimating blood–brain barrier opening in a rat model of hemorrhagic transformation with Patlak plots of Gd-DTPA contrast enhanced MRI. Acta Neurochir Suppl 2003, 86:37-39.
  • [24]Knight RA, Nagaraja TN, Ewing JR, Nagesh V, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD: Quantitation and localization of blood-to-brain influx by MRI and quantitative autoradiography in a model of transient focal ischemia. Magn Reson Med 2005, 54:813-821.
  • [25]Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD: Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 2006, 26:310-320.
  • [26]Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P: Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 1993, 13:24-42.
  • [27]Merten CL, Knitelius HO, Assheuer J, Bergmann-Kurz B, Hedde JP, Bewermeyer H: MRI of acute cerebral infarcts: increased contrast enhancement with continuous infusion of gadolinium. Neuroradiology 1999, 41:242-248.
  • [28]Nagaraja TN, Nagesh V, Ewing JR, Whitton PA, Fenstermacher JD, Knight RA: Step-down infusions of Gd-DTPA yield greater contrast-enhanced magnetic resonance images of BBB damage in acute stroke than bolus injections. Magn Reson Imaging 2007, 25:311-318.
  • [29]Knight RA, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Nagaraja TN: Estimating blood and brain concentrations and blood-to-brain influx by magnetic resonance imaging with step-down infusion of Gd-DTPA in focal transient cerebral ischemia and confirmation by quantitative autoradiography with Gd-[14C]DTPA. J Cereb Blood Flow Metab 2009, 29:1048-1058.
  • [30]Nagaraja TN, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Knight RA: The MRI-measured arterial input function resulting from a bolus injection of Gd-DTPA in a rat model of stroke slightly underestimates that of Gd-[14C]DTPA and marginally overestimates the blood-to-brain influx rate constant determined by Patlak plots. Magn Reson Med 2010, 63:1502-1509.
  • [31]Nagaraja TN, Karki K, Ewing JR, Croxen RL, Knight RA: Identification of variations in blood–brain barrier opening after cerebral ischemia by dual contrast-enhanced magnetic resonance imaging and T1sat measurements. Stroke 2008, 39:427-432.
  • [32]Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD: Patlak plots of Gd-DTPA MRI data yield blood–brain transfer constants concordant with those of 14C-sucrose in areas of blood–brain opening. Magn Reson Med 2003, 50:283-292.
  • [33]Ewing JR, Wei L, Knight RA, Pawa S, Nagaraja TN, Brusca T, Divine GW, Fenstermacher JD: Direct comparison of local cerebral blood flow rates measured by MRI arterial spin-tagging and quantitative autoradiography in a rat model of experimental cerebral ischemia. J Cereb Blood Flow Metab 2003, 23:198-209.
  • [34]Knight RA, Nagesh V, Nagaraja TN, Ewing JR, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD: Acute blood–brain barrier opening in experimentally induced focal cerebral ischemia is preferentially identified by quantitative magnetization transfer imaging. Magn Reson Med 2005, 54:822-832.
  • [35]Fenstermacher J, Kaye T: Drug “diffusion” within the brain. Ann N Y Acad Sci 1988, 531:29-39.
  • [36]Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev 2008, 88:1277-1340.
  • [37]Fenstermacher JD, Li CL, Levin VA: Extracellular space of the cerebral cortex of normothermic and hypothermic cats. Exp Neurol 1970, 27:101-114.
  • [38]Nicholson C, Sykova E: Extracellular space structure revealed by diffusion analysis. Trends Neurosci 1998, 21:207-215.
  • [39]Thorne RG, Nicholson C: In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 2006, 103:5567-5572.
  • [40]Cserr HF, Ostrach LH: Bulk flow of interstitial fluid after intracranial injection of blue dextran. Exp Neurol 1974, 45:50-60.
  • [41]Reulen H-J: Bulk flow and diffusion revisited, and clinical applications. Acta Neurochir Suppl 2010, 106:3-13.
  • [42]Keep RF, Hua Y, Xi G: Brain water content. A misunderstood measurement? Transl Stroke Res 2012, 3:263-265.
  • [43]Pillai DR, Dittmar MS, Baldaranov D, Heidemann RM, Henning EC, Schuierer G, Bogdahn U, Schlachetzki F: Cerebral ischemia–reperfusion injury in rats—A 3 T MRI study on biphasic blood–brain barrier opening and the dynamics of edema formation. J Cereb Blood Flow Metab 2009, 29:1846-1855.
  • [44]Lo EH, Singhal AB, Torchilin VP, Abbott NJ: Drug delivery to the damaged brain. Brain Res Rev 2001, 38:140-148.
  • [45]Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF: Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009, 23:35-58.
  • [46]Kawamata T, Dalton Dietrich W, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP: Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A 1997, 94:8179-8184.
  • [47]Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F, Ommer B, Schwab ME: Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 2014, 344:1250-1255.
  文献评价指标  
  下载次数:8次 浏览次数:6次