期刊论文详细信息
Diagnostic Pathology
Gene-expression analysis of a colorectal cancer-specific discriminatory transcript set on formalin-fixed, paraffin-embedded (FFPE) tissue samples
Béla Molnár4  Zsolt Tulassay4  Barbara Kinga Barták3  Boye Schnack Nielsen2  Katalin Leiszter3  Kinga Tóth3  Sándor Spisák4  Orsolya Galamb4  Barnabás Wichmann4  Alexandra Kalmár1 
[1] 2nd Department of Medicine Semmelweis University, Szentkirályi str. 46., Budapest, 1088, Hungary;Bioneer A/S, Hørsholm, Denmark;2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary;Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
关键词: Paraffin-embedded;    Formalin-fixed;    Fresh frozen;    In situ hybridization;    qRT-PCR;    Gene expression;    Colorectal cancer;   
Others  :  1225940
DOI  :  10.1186/s13000-015-0363-4
 received in 2015-03-11, accepted in 2015-07-09,  发布年份 2015
PDF
【 摘 要 】

Background

A recently published transcript set is suitable for gene expression-based discrimination of normal colonic and colorectal cancer (CRC) biopsy samples. Our aim was to test the discriminatory power of the CRC-specific transcript set on independent biopsies and on formalin-fixed, paraffin-embedded (FFPE) tissue samples.

Methods

Total RNA isolations were performed with the automated MagNA Pure 96 Cellular RNA Large Volume Kit (Roche) from fresh frozen biopsies stored in RNALater (CRC (n = 15) and healthy colonic (n = 15)), furthermore from FFPE specimens including CRC (n = 15) and normal adjacent tissue (NAT) (n = 15) specimens next to the tumor. After quality and quantity measurements, gene expression analysis of a colorectal cancer-specific marker set with 11 genes (CA7, COL12A1, CXCL1, CXCL2, CHI3L1, GREM1, IL1B, IL1RN, IL8, MMP3, SLC5A7) was performed with array real-time PCR using Transcriptor First Strand cDNA Synthesis Kit (Roche) and RealTime ready assays on LightCycler®480 System (Roche). In situ hybridization for two selected transcripts (CA7, CXCL1) was performed on NAT (n = 3), adenoma (n = 3) and CRC (n = 3) FFPE samples.

Results

Although analytical parameters of automatically isolated RNA samples showed differences between fresh frozen biopsy and FFPE samples, both quantity and the quality enabled their application in gene expression analyses. CRC and normal fresh frozen biopsy samples could be distinguished with 93.3 % sensitivity and 86.7 % specificity and FFPE samples with 96.7 and 70.0 %, respectively. In situ hybridization could confirm the upregulation of CXCL1 and downregulation of CA7 in colorectal adenomas and tumors compared to healthy controls.

Conclusion

According to our results, gene expression analysis of the analyzed colorectal cancer-specific marker set can also be performed from FFPE tissue material. With the addition of an automated workflow, this marker set may enhance the objective classification of colorectal neoplasias in the routine procedure in the future.

【 授权许可】

   
2015 Kalmár et al.

【 预 览 】
附件列表
Files Size Format View
20150922101136689.pdf 1935KB PDF download
Fig. 5. 70KB Image download
Fig. 4. 59KB Image download
Fig. 3. 105KB Image download
Fig. 2. 115KB Image download
Fig. 1. 46KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Huerta S. Recent advances in the molecular diagnosis and prognosis of colorectal cancer. Expert review of molecular diagnostics. 2008;8:277–88.
  • [2]Galamb O, Wichmann B, Sipos F, Spisak S, Krenacs T, Toth K et al.. Dysplasia-carcinoma transition specific transcripts in colonic biopsy samples. PLoS One. 2012; 7:e48547.
  • [3]Ribeiro-Silva A, Zhang H, Jeffrey SS. RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies. BMC Mol Biol. 2007; 8:118. BioMed Central Full Text
  • [4]Budczies J, Weichert W, Noske A, Muller BM, Weller C, Wittenberger T et al.. Genome-wide gene expression profiling of formalin-fixed paraffin-embedded breast cancer core biopsies using microarrays. J Histochem Cytochem . 2011; 59:146-57.
  • [5]Chung JY, Braunschweig T, Hewitt SM. Optimization of recovery of RNA from formalin-fixed, paraffin-embedded tissue. Diagn Mol Pathol. 2006; 15:229-36.
  • [6]Macabeo-Ong M, Ginzinger DG, Dekker N, McMillan A, Regezi JA, Wong DT et al.. Effect of duration of fixation on quantitative reverse transcription polymerase chain reaction analyses. Mod Pathol. 2002; 15:979-87.
  • [7]Thomas M, Poignee-Heger M, Weisser M, Wessner S, Belousov A. An optimized workflow for improved gene expression profiling for formalin-fixed, paraffin-embedded tumor samples. J Clin Bioinformatics. 2013; 3:10. BioMed Central Full Text
  • [8]Bohmann K, Hennig G, Rogel U, Poremba C, Mueller BM, Fritz P et al.. RNA extraction from archival formalin-fixed paraffin-embedded tissue: a comparison of manual, semiautomated, and fully automated purification methods. Clin Chem. 2009; 55:1719-27.
  • [9]Bianchini M, Levy E, Zucchini C, Pinski V, Macagno C, De Sanctis P et al.. Comparative study of gene expression by cDNA microarray in human colorectal cancer tissues and normal mucosa. Int J Oncol. 2006; 29:83-94.
  • [10]Sipos F, Germann TM, Wichmann B, Galamb O, Spisak S, Krenacs T et al.. MMP3 and CXCL1 are potent stromal protein markers of dysplasia-carcinoma transition in sporadic colorectal cancer. Eur J Cancer Prev. 2014; 23:336-43.
  • [11]Jorgensen S, Baker A, Moller S, Nielsen BS. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods. 2010; 52:375-81.
  • [12]Nielsen BS, Jorgensen S, Fog JU, Sokilde R, Christensen IJ, Hansen U et al.. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 2011; 28:27-38.
  • [13]Scicchitano MS, Dalmas DA, Bertiaux MA, Anderson SM, Turner LR, Thomas RA et al.. Preliminary comparison of quantity, quality, and microarray performance of RNA extracted from formalin-fixed, paraffin-embedded, and unfixed frozen tissue samples. J Histochem Cytochem. 2006; 54:1229-37.
  • [14]von Ahlfen S, Missel A, Bendrat K, Schlumpberger M. Determinants of RNA quality from FFPE samples. PLoS One. 2007; 2:e1261.
  • [15]Kalmar A, Wichmann B, Galamb O, Spisak S, Toth K, Leiszter K et al.. Gene expression analysis of normal and colorectal cancer tissue samples from fresh frozen and matched formalin-fixed, paraffin-embedded (FFPE) specimens after manual and automated RNA isolation. Methods. 2013; 59:S16-9.
  • [16]Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006; 27:126-39.
  • [17]Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61:759-67.
  • [18]Wang Y, Jatkoe T, Zhang Y, Mutch MG, Talantov D, Jiang J et al.. Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. J Clin Oncol. 2004; 22:1564-71.
  • [19]Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A et al.. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol. 2005; 23:3526-35.
  • [20]Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen C et al.. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 2011; 29:17-24.
  • [21]Croner RS, Foertsch T, Brueckl WM, Guenther K, Siebenhaar R, Stremmel C et al.. Common denominator genes that distinguish colorectal carcinoma from normal mucosa. Int J Colorectal Dis. 2005; 20:353-62.
  • [22]Kitahara O, Furukawa Y, Tanaka T, Kihara C, Ono K, Yanagawa R et al.. Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res. 2001; 61:3544-9.
  • [23]Notterman DA, Alon U, Sierk AJ, Levine AJ. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res. 2001; 61:3124-30.
  • [24]Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J et al.. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics. 2006; 7:325. BioMed Central Full Text
  • [25]Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D et al.. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A. 1999; 96:6745-50.
  • [26]Zou TT, Selaru FM, Xu Y, Shustova V, Yin J, Mori Y et al.. Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene. 2002; 21:4855-62.
  • [27]Lin YM, Furukawa Y, Tsunoda T, Yue CT, Yang KC, Nakamura Y. Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene. 2002; 21:4120-8.
  • [28]Friederichs J, Rosenberg R, Mages J, Janssen KP, Maeckl C, Nekarda H et al.. Gene expression profiles of different clinical stages of colorectal carcinoma: toward a molecular genetic understanding of tumor progression. Int J Colorectal Dis. 2005; 20:391-402.
  • [29]Lascorz J, Forsti A, Chen B, Buch S, Steinke V, Rahner N et al.. Genome-wide association study for colorectal cancer identifies risk polymorphisms in German familial cases and implicates MAPK signalling pathways in disease susceptibility. Carcinogenesis. 2010; 31:1612-9.
  • [30]Elrasheid AH, Kheirelseid NM, Kerin MJ. Clinical applications of molecular profiling in colorectal cancer: review of the literature. Am J Mol Biol. 2013; 3:131-8.
  • [31]Grabowski P, Maaser K, Hanski C, Stein H, Sturm I, Hopfenmuller W et al.. Prognostic value of multimarker analysis in stage III colorectal cancer: one step forward towards an individualized therapy decision. Onkologie. 2005; 28:399-403.
  • [32]Garcia-Bilbao A, Armananzas R, Ispizua Z, Calvo B, Alonso-Varona A, Inza I et al.. Identification of a biomarker panel for colorectal cancer diagnosis. BMC Cancer. 2012; 12:43. BioMed Central Full Text
  • [33]Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y et al.. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A. 2003; 100:2645-50.
  • [34]Ito H, Kaneko K, Makino R, Konishi K, Kurahashi T, Yamamoto T et al.. Interleukin-1beta gene in esophageal, gastric and colorectal carcinomas. Oncol Rep. 2007; 18:473-81.
  • [35]Lurje G, Hendifar AE, Schultheis AM, Pohl A, Husain H, Yang D et al.. Polymorphisms in interleukin 1 beta and interleukin 1 receptor antagonist associated with tumor recurrence in stage II colon cancer. Pharmacogenet Genomics. 2009; 19:95-102.
  • [36]Miki C, Konishi N, Ojima E, Hatada T, Inoue Y, Kusunoki M. C-reactive protein as a prognostic variable that reflects uncontrolled up-regulation of the IL-1-IL-6 network system in colorectal carcinoma. Dig Dis Sci. 2004; 49:970-6.
  • [37]Viet HT, Wagsater D, Hugander A, Dimberg J. Interleukin-1 receptor antagonist gene polymorphism in human colorectal cancer. Oncol Rep. 2005; 14:915-8.
  • [38]Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G et al.. Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer. 2011; 128:2038-49.
  • [39]Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D et al.. The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther. 2012; 11:1353-64.
  • [40]Namkoong H, Shin SM, Kim HK, Ha SA, Cho GW, Hur SY et al.. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein. BMC Cancer. 2006; 6:74. BioMed Central Full Text
  • [41]Kim M, Yoon S, Lee S, Ha SA, Kim HK, Kim JW et al.. Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion. PLoS One. 2012; 7:e35100.
  • [42]Doll D, Keller L, Maak M, Boulesteix AL, Siewert JR, Holzmann B et al.. Differential expression of the chemokines GRO-2, GRO-3, and interleukin-8 in colon cancer and their impact on metastatic disease and survival. Int J Colorectal Dis. 2010; 25:573-81.
  • [43]Kollmar O, Junker B, Rupertus K, Menger MD, Schilling MK. Studies on MIP-2 and CXCR2 expression in a mouse model of extrahepatic colorectal metastasis. Eur J Surg Oncol. 2007; 33:803-11.
  • [44]Karagiannis GS, Petraki C, Prassas I, Saraon P, Musrap N, Dimitromanolakis A et al.. Proteomic signatures of the desmoplastic invasion front reveal collagen type XII as a marker of myofibroblastic differentiation during colorectal cancer metastasis. Oncotarget. 2012; 3:267-85.
  • [45]Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A et al.. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013; 19:6006-19.
  • [46]Mizoguchi E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology. 2006; 130:398-411.
  • [47]Eurich K, Segawa M, Toei-Shimizu S, Mizoguchi E. Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. World J Gastroenterol. 2009; 15:5249-59.
  • [48]Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H et al.. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. 2012; 31:3111-23.
  • [49]Cintin C, Johansen JS, Christensen IJ, Price PA, Sorensen S, Nielsen HJ. High serum YKL-40 level after surgery for colorectal carcinoma is related to short survival. Cancer. 2002; 95:267-74.
  • [50]Broussard EK, Kim R, Wiley JC, Marquez JP, Annis JE, Pritchard D et al.. Identification of putative immunologic targets for colon cancer prevention based on conserved gene upregulation from preinvasive to malignant lesions. Cancer Prev Res. 2013; 6:666-74.
  • [51]Del Giudice R, Monti DM, Truppo E, Arciello A, Supuran CT, De Simone G et al.. Human carbonic anhydrase VII protects cells from oxidative damage. Biol Chem. 2013; 394:1343-8.
  • [52]Yang GZ, Hu L, Cai J, Chen HY, Zhang Y, Feng D et al.. Prognostic value of carbonic anhydrase VII expression in colorectal carcinoma. BMC Cancer. 2015; 15:209. BioMed Central Full Text
  • [53]Wang D, Yang W, Du J, Devalaraja MN, Liang P, Matsumoto K et al.. MGSA/GRO-mediated melanocyte transformation involves induction of Ras expression. Oncogene. 2000; 19:4647-59.
  • [54]Arenberg DA, Polverini PJ, Kunkel SL, Shanafelt A, Hesselgesser J, Horuk R et al.. The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J Leukoc Biol. 1997; 62:554-62.
  • [55]Luan J, Shattuck-Brandt R, Haghnegahdar H, Owen JD, Strieter R, Burdick M et al.. Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol. 1997; 62:588-97.
  • [56]Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q et al.. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006; 203:941-51.
  • [57]Wen Y, Giardina SF, Hamming D, Greenman J, Zachariah E, Bacolod MD et al.. GROalpha is highly expressed in adenocarcinoma of the colon and down-regulates fibulin-1. Clin Cancer Res. 2006; 12:5951-9.
  • [58]le Rolle AF, Chiu TK, Fara M, Shia J, Zeng Z, Weiser MR, Paty PB, Chiu VK. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Transl Med. 2015;13:199.
  • [59]Oladipo O, Conlon S, O'Grady A, Purcell C, Wilson C, Maxwell PJ et al.. The expression and prognostic impact of CXC-chemokines in stage II and III colorectal cancer epithelial and stromal tissue. Br J Cancer. 2011; 104:480-7.
  • [60]Bodey B, Bodey B, Siegel SE, Kaiser HE. Prognostic significance of matrix metalloproteinase expression in colorectal carcinomas. In Vivo. 2000; 14:659-66.
  • [61]Islekel H, Oktay G, Terzi C, Canda AE, Fuzun M, Kupelioglu A. Matrix metalloproteinase-9,-3 and tissue inhibitor of matrix metalloproteinase-1 in colorectal cancer: relationship to clinicopathological variables. Cell Biochem Funct. 2007; 25:433-41.
  文献评价指标  
  下载次数:17次 浏览次数:8次