期刊论文详细信息
Cell & Bioscience
Paradoxical roles of autophagy in different stages of tumorigenesis: protector for normal or cancer cells
Lixin Wei2  Jianrui Song2  Shufan Jiao1  Ning Cai1  Shanshan Zhang2  Weijie Deng2  Kai Sun2 
[1] Medical Sciences Research Center, Renji hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China;Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
关键词: Metastasis;    Tumor progression;    Early tumorigenesis;    Protector;    Autophagy;   
Others  :  791549
DOI  :  10.1186/2045-3701-3-35
 received in 2013-01-22, accepted in 2013-08-01,  发布年份 2013
PDF
【 摘 要 】

Autophagy serves as a dynamic degradation and recycling system that provides biological materials and energy in response to stress. The role of autophagy in tumor development is complex. Various studies suggest that autophagy mainly contributes to tumor suppression during the early stage of tumorigenesis and tumor promotion during the late stage of tumorigenesis. During the tumorization of normal cells, autophagy protects genomic stability by retarding stem cells-involved damage/repair cycle, and inhibits the formation of chronic inflammatory microenvironment, thus protecting normal cell homeostasis and preventing tumor generation. On the other hand, autophagy also protects tumor cells survival during malignant progression by supporting cellular metabolic demands, decreasing metabolic damage and supporting anoikis resistance and dormancy. Taken together, autophagy appears to play a role as a protector for either normal or tumor cells during the early or late stage of tumorigenesis, respectively. The process of tumorigenesis perhaps needs to undergo twice autophagy-associated screening. The normal cells that have lower autophagy capacity are prone to tumorization, and the incipient tumor cells that have higher autophagy capacity possibly are easier to survival in the hash microenvironment and accumulate more mutations to promote malignant progression.

【 授权许可】

   
2013 Sun et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705014735328.pdf 646KB PDF download
Figure 2. 78KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2010, 61:69-90.
  • [2]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
  • [3]Rosenfeldt MT, Ryan KM: The multiple roles of autophagy in cancer. Carcinogenesis 2011, 32:955-963.
  • [4]Kimmelman AC: The dynamic nature of autophagy in cancer. Genes Dev 2011, 25:1999-2010.
  • [5]Mizushima N: Autophagy: process and function. Genes Dev 2007, 21:2861-2873.
  • [6]Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y: Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev Mol Cell Biol 2009, 10:458-467.
  • [7]Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009, 20:1992-2003.
  • [8]Mercer CA, Kaliappan A, Dennis PB: A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 2009, 5:649-662.
  • [9]Alers S, Loffler AS, Wesselborg S, Stork B: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012, 32:2-11.
  • [10]Jung CH, Ro SH, Cao J, Otto NM, Kim DH: mTOR regulation of autophagy. FEBS letters 2010, 584:1287-1295.
  • [11]Kim J, Kundu M, Viollet B, Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13:132-141.
  • [12]Funderburk SF, Wang QJ, Yue Z: The Beclin 1–VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 2010, 20:355-362.
  • [13]Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013, 15:741-750.
  • [14]Geng J, Klionsky DJ: The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO reports 2008, 9:859-864.
  • [15]Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000, 19:5720-5728.
  • [16]Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T: Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003, 116:1679-1688.
  • [17]Moscat J, Diaz-Meco MT, Wooten MW: Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 2007, 32:95-100.
  • [18]Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU: Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006, 8:688-699.
  • [19]Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, et al.: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009, 11:385-396.
  • [20]Gutierrez MG, Munafo DB, Beron W, Colombo MI: Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004, 117:2687-2697.
  • [21]Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, Yoshimori T, Noda T, Ohsumi Y: Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 2001, 12:3690-3702.
  • [22]Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P: Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 2000, 406:902-906.
  • [23]Rabinowitz JD, White E: Autophagy and metabolism. Sci (New York, NY 2010, 330:1344-1348.
  • [24]Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
  • [25]Yang Z, Klionsky DJ: Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010, 22:124-131.
  • [26]Virgin HW, Levine B: Autophagy genes in immunity. Nat Immunol 2009, 10:461-470.
  • [27]Choi AM, Ryter SW, Levine B: Autophagy in human health and disease. N Engl J Med 2013, 368:651-662.
  • [28]Tacke F, Trautwein C: Controlling autophagy: a new concept for clearing liver disease. Hepatology 2011, 53:356-358.
  • [29]Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B: Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
  • [30]Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al.: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003, 112:1809-1820.
  • [31]Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B: Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Sci (New York, NY 2012, 338:956-959.
  • [32]Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C: Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Clin Invest 2007, 282:18573-18583.
  • [33]Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, et al.: Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007, 9:1142-1151.
  • [34]Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N: Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011, 25:795-800.
  • [35]Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007, 21:1621-1635.
  • [36]Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E: Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 2007, 21:1367-1381.
  • [37]Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al.: Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137:1062-1075.
  • [38]Xie R, Wang F, McKeehan WL, Liu L: Autophagy enhanced by microtubule- and mitochondrion-associated MAP1S suppresses genome instability and hepatocarcinogenesis. Cancer Res 2011, 71:7537-7546.
  • [39]Meng X, Riordan NH: Cancer is a functional repair tissue. Med Hypotheses 2006, 66:486-490.
  • [40]Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, et al.: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
  • [41]Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, et al.: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 2011, 208:455-467.
  • [42]Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL: FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 2013, 16:532-542.
  • [43]Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell 2010, 140:883-899.
  • [44]Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, et al.: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell 2006, 10:51-64.
  • [45]Perlmutter DH: Autophagic disposal of the aggregation-prone protein that causes liver inflammation and carcinogenesis in alpha-1-antitrypsin deficiency. Cell Death Differ 2009, 16:39-45.
  • [46]Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y: NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004, 431:461-466.
  • [47]Sun K, Guo XL, Zhao QD, Jing YY, Kou XR, Xie XQ, Zhou Y, Cai N, Gao L, Zhao X, et al.: Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma development in rats. Cell Death Dis 2013, 4:e501.
  • [48]Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, et al.: Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008, 456:264-268.
  • [49]Zhou R, Yazdi AS, Menu P, Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469:221-225.
  • [50]Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM: Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 2011, 208:519-533.
  • [51]Altman BJ, Jacobs SR, Mason EF, Michalek RD, MacIntyre AN, Coloff JL, Ilkayeva O, Jia W, He YW, Rathmell JC: Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene 2011, 30:1855-1867.
  • [52]Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, et al.: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011, 25:460-470.
  • [53]Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011, 25:1510-1527.
  • [54]Scaffidi P, Misteli T, Bianchi ME: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418:191-195.
  • [55]Bertout JA, Patel SA, Simon MC: The impact of O2 availability on human cancer. Nat Rev 2008, 8:967-975.
  • [56]De Bock K, Mazzone M, Carmeliet P: Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 2011, 8:393-404.
  • [57]Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009, 29:2570-2581.
  • [58]Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, et al.: Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011, 25:717-729.
  • [59]Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM, Ding WX: Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 2011, 7:188-204.
  • [60]Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM: Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 2012, 18:370-379.
  • [61]Wan XB, Fan XJ, Chen MY, Xiang J, Huang PY, Guo L, Wu XY, Xu J, Long ZJ, Zhao Y, et al.: Elevated Beclin 1 expression is correlated with HIF-1alpha in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy 2010, 6:395-404.
  • [62]Koukourakis MI, Giatromanolaki A, Sivridis E, Pitiakoudis M, Gatter KC, Harris AL: Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Br J Cancer 2010, 103:1209-1214.
  • [63]Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y, Song Z, Zheng Q, Xiong J: Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 2013, 34:1343-1351.
  • [64]Guadamillas MC, Cerezo A, Del Pozo MA: Overcoming anoikis–pathways to anchorage-independent growth in cancer. J Cell Sci 2011, 124:3189-3197.
  • [65]Frisch SM, Francis H: Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994, 124:619-626.
  • [66]Kenific CM, Thorburn A, Debnath J: Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol 2010, 22:241-245.
  • [67]Fung C, Lock R, Gao S, Salas E, Debnath J: Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 2008, 19:797-806.
  • [68]Lock R, Debnath J: Extracellular matrix regulation of autophagy. Curr Opin Cell Biol 2008, 20:583-588.
  • [69]Goss PE, Chambers AF: Does tumour dormancy offer a therapeutic target? Nat Rev 2010, 10:871-877.
  • [70]Pantel K, Alix-Panabieres C, Riethdorf S: Cancer micrometastases. Nat Rev Clin Oncol 2009, 6:339-351.
  • [71]White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U, Muller WJ: Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 2004, 6:159-170.
  • [72]Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, et al.: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 2008, 118:3917-3929.
  • [73]Yue W, Hamai A, Tonelli G, Bauvy C, Nicolas V, Tharinger H, Codogno P, Mehrpour M: Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 2013, 9:714-729.
  文献评价指标  
  下载次数:6次 浏览次数:5次