Journal of Biomedical Science | |
In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds | |
Andrew L. Kung2  Jen-Chieh Tseng1  | |
[1] Current address: PerkinElmer Inc, 68 Elm Street, Hopkinton 01748, MA, USA;Columbia University Medical Center, 3959 Broadway, New York 10032, NY, USA | |
关键词: CIEEL energy transfer; 1,2-dioxetane; Fluorescence; Luminescence; In vivo imaging; | |
Others : 1219654 DOI : 10.1186/s12929-015-0155-x |
|
received in 2015-03-30, accepted in 2015-06-11, 发布年份 2015 | |
【 摘 要 】
Background
Here we present a non-invasive imaging method for visualizing endogenous enzyme activities in living animals. This optical imaging method is based on an energy transfer principle termed chemically initiated electron exchange luminescence (CIEEL). The light energy is provided by enzymatic activation of metastable 1,2-dioxetane substrates, whose protective groups are removed by hydrolytic enzymes such as β-galactosidase and alkaline phosphatase. In the presence of a nearby fluorescent recipient, the chemical energy within the activated substrate is then transferred via formation of a charge-transfer complex with the fluorophore, a mechanism closely related to glow stick chemistry.
Results
Efficient CIEEL energy transfer requires close proximity between the trigger enzyme and the fluorescent recipient. Using cells stained with fluorescent dialkylcarbocyanines as the energy recipients, we demonstrated CIEEL imaging of cellular β-galactosidase or alkaline phosphatase activity. In living animals, we used a similar approach to non-invasively image alkaline phosphatase activity in the peritoneal cavity.
Conclusions
In this report, we provide proof-of-concept for CIEEL imaging of in vivo enzymatic activity. In addition, we demonstrate the use of CIEEL energy transfer for visualizing elevated alkaline phosphatase activity associated with tissue inflammation in living animals.
【 授权许可】
2015 Tseng and Kung.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150718103704940.pdf | 3181KB | download | |
Fig. 6. | 117KB | Image | download |
Fig. 5. | 51KB | Image | download |
Fig. 4. | 28KB | Image | download |
Fig. 3. | 104KB | Image | download |
Fig. 2. | 120KB | Image | download |
Fig. 1. | 55KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003; 13:195-208.
- [2]Schaferling M. The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed Engl. 2012; 51:3532-54.
- [3]Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013; 10:507-18.
- [4]Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng. 2002; 4:235-60.
- [5]Gross S, Gammon ST, Moss BL, Rauch D, Harding J, Heinecke JW et al.. Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med. 2009; 15:455-61.
- [6]Welsh DK, Kay SA. Bioluminescence imaging in living organisms. Curr Opin Biotechnol. 2005; 16:73-8.
- [7]Tseng JC, Bailey D, Tupper T, Kung AL. Using glow stick chemistry for biological imaging. Mol Imaging Biol. 2014; 16:478-87.
- [8]Koo JA, Schmidt SP, Schuster GB. Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. Proc Natl Acad Sci U S A. 1978; 75:30-3.
- [9]Nishida A, Kimura H, Nakano M, Goto T. A sensitive and specific chemiluminescence method for estimating the ability of human granulocytes and monocytes to generate O2. Clin Chim Acta. 1989; 179:177-81.
- [10]Nakano M, Sugioka K, Ushijima Y, Goto T. Chemiluminescence probe with Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one, for estimating the ability of human granulocytes to generate O2. Anal Biochem. 1986; 159:363-9.
- [11]Rauhut MM. Chemiluminescence from concerted peroxide decomposition reactions. Acc Chem Res. 1969; 2:80-7.
- [12]Tseng JC, Kung AL. In vivo imaging of inflammatory phagocytes. Chem Biol. 2012; 19:1199-209.
- [13]Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc. 2011; 133:11597-604.
- [14]Pfleger KD, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods. 2006; 3:165-74.
- [15]Rauhut MM, Bollyky LJ, Roberts BG, Loy M, Whitman RH, Iannotta AV et al.. Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds. J Am Chem Soc. 1967; 89:6515-22.
- [16]Bronstein I, Edwards B, Voyta JC. 1,2-dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays J Biolumin Chemilumin. 1989; 4:99-111.
- [17]Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V et al.. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. J Biomed Opt. 2009; 14:054005.
- [18]Honda K, Miyaguchi K, Imai K. Evaluation of fluorescent compounds for peroxyoxalate chemiluminescence detection. Anal Chim Acta. 1985; 177:111-20.
- [19]Culvenor JG, Harris AW, Mandel TE, Whitelaw A, Ferber E. Alkaline phosphatase in hematopoietic tumor cell lines of the mouse: high activity in cells of the B lymphoid lineage. J Immunol. 1981; 126:1974-7.
- [20]Okun DB, Tanaka KR. Leukocyte alkaline phosphatase. Am J Hematol. 1978; 4:293-9.
- [21]Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J et al.. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater. 2007; 6:765-9.
- [22]Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A. 1986; 83:7182-6.
- [23]Berger J, Garattini E, Hua JC, Udenfriend S. Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 1987; 84:695-8.
- [24]Garattini E, Gianni M. Leukocyte alkaline phosphatase a specific marker for the post-mitotic neutrophilic granulocyte: regulation in acute promyelocytic leukemia. Leuk Lymphoma. 1996; 23:493-503.
- [25]Campbell EL, MacManus CF, Kominsky DJ, Keely S, Glover LE, Bowers BE et al.. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proc Natl Acad Sci U S A. 2010; 107:14298-303.
- [26]Goldberg RF, Austen WG, Zhang X, Munene G, Mostafa G, Biswas S et al.. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A. 2008; 105:3551-6.
- [27]Chen KT, Malo MS, Moss AK, Zeller S, Johnson P, Ebrahimi F et al.. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol. 2010; 299:G467-75.
- [28]Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med. 2009; 47:760-6.