| Journal of Neuroinflammation | |
| CD80+ and CD86+ B cells as biomarkers and possible therapeutic targets in HTLV-1 associated myelopathy/tropical spastic paraparesis and multiple sclerosis | |
| Johan Van Weyenbergh6  Roland Liblau4  Bernardo Galvão-Castro2  Anne-Mieke Vandamme7  Eduardo Gotuzzo9  Michael Talledo5  Carolina Alvarez5  Giovanni López5  Ramon Kruschewsky8  Saul V Schnitman3  Ricardo Khouri3  David Brassat4  Daniele Decanine3  Soraya Maria Menezes1  | |
| [1] Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium;LASP, CPqGM-FIOCRUZ, Salvador-Bahia, Brazil;LIMI, Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão 121, 40296-710 Salvador-Bahia, Brazil;INSERM UMR1043 and Pôle des Neurosciences, Hôpital Purpan, Université de Toulouse, Toulouse, France;Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru;Institute for Immunological Investigation (iii-INCT), São Paulo, Brazil;Instituto de Higiene e Medicina Tropical, Centro de Malária e outras Doenças Tropicais and Unidade de Microbiologia, Universidade Nova de Lisboa, Lisbon, Portugal;Bahiana School of Medicine and Public Health, Salvador-Bahia, Brazil;Departamento de Medicina, Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru | |
| 关键词: Gender; Disease severity; Ex vivo; Human; CD86; Costimulatory CD80; B cell; Interferon-alpha/beta; Multiple sclerosis; HTLV-1; Neuroinflammatory disease; | |
| Others : 825763 DOI : 10.1186/1742-2094-11-18 |
|
| received in 2013-07-15, accepted in 2014-01-13, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Human T-cell lymphotropic virus (HTLV-1) is the causative agent of the incapacitating, neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, there are no disease-modifying therapies with long-term clinical benefits or validated biomarkers for clinical follow-up in HAM/TSP. Although CD80 and CD86 costimulatory molecules play prominent roles in immune regulation and reflect disease status in multiple sclerosis (MS), data in HAM/TSP are lacking.
Methods
Using flow cytometry, we quantified ex vivo and in vitro expression of CD80 and CD86 in PBMCs of healthy controls, HTLV-1-infected individuals with and without HAM/TSP, and MS patients. We hypothesized ex vivo CD80 and CD86 expressions and their in vitro regulation by interferon (IFN)-α/β mirror similarities between HAM/TSP and MS and hence might reveal clinically useful biomarkers in HAM/TSP.
Results
Ex vivo expression of CD80 and CD86 in T and B cells increased in all HTLV-1 infected individuals, but with a selective defect for B cell CD86 upregulation in HAM/TSP. Despite decreased total B cells with increasing disease duration (p = 0.0003, r = −0.72), CD80+ B cells positively correlated with disease severity (p = 0.0017, r = 0.69) in HAM/TSP. B cell CD80 expression was higher in women with HAM/TSP, underscoring that immune markers can reflect the female predominance observed in most autoimmune diseases. In contrast to MS patients, CD80+ (p = 0.0001) and CD86+ (p = 0.0054) lymphocytes expanded upon in vitro culture in HAM/TSP patients. The expansion of CD80+ and CD86+ T cells but not B cells was associated with increased proliferation in HTLV-1 infection. In vitro treatment with IFN-β but not IFN-α resulted in a pronounced increase of B cell CD86 expression in healthy controls, as well as in patients with neuroinflammatory disease (HAM/TSP and MS), similar to in vivo treatment in MS.
Conclusions
We propose two novel biomarkers, ex vivo CD80+ B cells positively correlating to disease severity and CD86+ B cells preferentially induced by IFN-β, which restores defective upregulation in HAM/TSP. This study suggests a role for B cells in HAM/TSP pathogenesis and opens avenues to B cell targeting (with proven clinical benefit in MS) in HAM/TSP but also CD80-directed immunotherapy, unprecedented in both HAM/TSP and MS.
【 授权许可】
2014 Menezes et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140713073411974.pdf | 1121KB | ||
| Figure 9. | 103KB | Image | |
| Figure 8. | 86KB | Image | |
| Figure 7. | 63KB | Image | |
| Figure 6. | 96KB | Image | |
| Figure 5. | 53KB | Image | |
| Figure 4. | 33KB | Image | |
| Figure 3. | 63KB | Image | |
| Figure 7. | 74KB | Image | |
| Figure 1. | 25KB | Image |
【 图 表 】
Figure 1.
Figure 7.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC: Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 1980, 77:7415-7419.
- [2]Wattel E, Vartanian JP, Pannetier C, Wain-Hobson S: Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J Virol 1995, 69:2863-2868.
- [3]de The G, Bomford R: An HTLV-I vaccine: why, how, for whom? AIDS Res Hum Retroviruses 1993, 9:381-386.
- [4]Hlela C, Shepperd S, Khumalo NP, Taylor GP: The prevalence of human T-cell lymphotropic virus type 1 in the general population is unknown. AIDS Rev 2009, 11:205-214.
- [5]Verdonck K, Gonzalez E, Van Dooren S, Vandamme AM, Vanham G, Gotuzzo E: Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis 2007, 7:266-281.
- [6]Bangham CR: The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J Gen Virol 2003, 84:3177-3189.
- [7]Kurtzke JF: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983, 33:1444-1452.
- [8]Osame M, Igata A, Matsumoto M, et al.: HTLV-I-associated myelopathy (HAM): treatment trials, retrospective survey, and clinical and laboratory findings. Hematol Rev 1990, 3:271-284.
- [9]Umehara F, Izumo S, Nakagawa M, Ronquillo AT, Takahashi K, Matsumuro K, Sato E, Osame M: Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol 1993, 52:424-430.
- [10]Nakagawa M, Nakahara K, Maruyama Y, Kawabata M, Higuchi I, Kubota H, Izumo S, Arimura K, Osame M: Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neurovirol 1996, 2:345-355.
- [11]Oh U, Jacobson S: Treatment of HTLV-I-as+sociated myelopathy/tropical spastic paraparesis: toward rational targeted therapy. Neurol Clin 2008, 26:781-797. ix-x
- [12]Lezin A, Gillet N, Olindo S, Signate A, Grandvaux N, Verlaeten O, Belrose G, de Carvalho BM, Hiscott J, Asquith B, et al.: Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood 2007, 110:3722-3728.
- [13]Taylor GP, Goon P, Furukawa Y, Green H, Barfield A, Mosley A, Nose H, Babiker A, Rudge P, Usuku K, et al.: Zidovudine plus lamivudine in human T-lymphotropic virus type-I-associated myelopathy: a randomised trial. Retrovirology 2006, 3:63. BioMed Central Full Text
- [14]Rafatpanah H, Rezaee A, Etemadi MM, Hosseini RF, Khorram B, Afsahr L, Taylor G, Mokhber N, Mahmoudi M, Abbaszadegan MR, et al.: The impact of interferon-alpha treatment on clinical and immunovirological aspects of HTLV-1-associated myelopathy in northeast of Iran. J Neuroimmunol 2012, 250:87-93.
- [15]Oh U, Yamano Y, Mora CA, Ohayon J, Bagnato F, Butman JA, Dambrosia J, Leist TP, McFarland H, Jacobson S: Interferon-beta1a therapy in human T-lymphotropic virus type I-associated neurologic disease. Ann Neurol 2005, 57:526-534.
- [16]Furukawa Y, Fujisawa J, Osame M, Toita M, Sonoda S, Kubota R, Ijichi S, Yoshida M: Frequent clonal proliferation of human T-cell leukemia virus type 1 (HTLV-1)-infected T cells in HTLV-1-associated myelopathy (HAM-TSP). Blood 1992, 80:1012-1016.
- [17]Tendler CL, Greenberg SJ, Burton JD, Danielpour D, Kim SJ, Blattner WA, Manns A, Waldmann TA: Cytokine induction in HTLV-I associated myelopathy and adult T-cell leukemia: alternate molecular mechanisms underlying retroviral pathogenesis. J Cell Biochem 1991, 46:302-311.
- [18]Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, Ichinose M, Bangham CR, Izumo S, Osame M: Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 1998, 4:586-593.
- [19]Kuroda Y, Matsui M: Cerebrospinal fluid interferon-gamma is increased in HTLV-I-associated myelopathy. J Neuroimmunol 1993, 42:223-226.
- [20]Nakamura S, Nagano I, Yoshioka M, Shimazaki S, Onodera J, Kogure K: Detection of tumor necrosis factor-alpha-positive cells in cerebrospinal fluid of patients with HTLV-I-associated myelopathy. J Neuroimmunol 1993, 42:127-130.
- [21]Nishimoto N, Yoshizaki K, Eiraku N, Machigashira K, Tagoh H, Ogata A, Kuritani T, Osame M, Kishimoto T: Elevated levels of interleukin-6 in serum and cerebrospinal fluid of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neurol Sci 1990, 97:183-193.
- [22]Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW: Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 2008, 14:429-436.
- [23]Koyanagi Y, Itoyama Y, Nakamura N, Takamatsu K, Kira J, Iwamasa T, Goto I, Yamamoto N: In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology 1993, 196:25-33.
- [24]Harris NL, Ronchese F: The role of B7 costimulation in T-cell immunity. Immunol Cell Biol 1999, 77:304-311.
- [25]Pardigon N, Cambouris C, Bercovici N, Lemaitre F, Liblau R, Kourilsky P: Delayed and separate costimulation in vitro supports the evidence of a transient “excited” state of CD8+ T cells during activation. J Immunol 2000, 164:4493-4499.
- [26]Lal RB, Rudolph DL, Dezzutti CS, Linsley PS, Prince HE: Costimulatory effects of T cell proliferation during infection with human T lymphotropic virus types I and II are mediated through CD80 and CD86 ligands. J Immunol 1996, 157:1288-1296.
- [27]Takamoto T, Makino M, Azuma M, Kanzaki T, Baba M, Sonoda S: HTLV-I-infected T cells activate autologous CD4+ T cells susceptible to HTLV-I infection in a costimulatory molecule-dependent fashion. Eur J Immunol 1997, 27:1427-1432.
- [28]Chang TT, Jabs C, Sobel RA, Kuchroo VK, Sharpe AH: Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J Exp Med 1999, 190:733-740.
- [29]Racke MK, Scott DE, Quigley L, Gray GS, Abe R, June CH, Perrin PJ: Distinct roles for B7-1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest 1995, 96:2195-2203.
- [30]Miller SD, Vanderlugt CL, Lenschow DJ, Pope JG, Karandikar NJ, Dal Canto MC, Bluestone JA: Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 1995, 3:739-745.
- [31]Zeinstra E, Wilczak N, De Keyser J: Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2. J Neuroimmunol 2003, 135:166-171.
- [32]Bauvois B, Nguyen J, Tang R, Billard C, Kolb JP: Types I and II interferons upregulate the costimulatory CD80 molecule in monocytes via interferon regulatory factor-1. Biochem Pharmacol 2009, 78:514-522.
- [33]Genc K, Dona DL, Reder AT: Increased CD80(+) B cells in active multiple sclerosis and reversal by interferon beta-1b therapy. J Clin Invest 1997, 99:2664-2671.
- [34]Wiesemann E, Deb M, Trebst C, Hemmer B, Stangel M, Windhagen A: Effects of interferon-beta on co-signaling molecules: upregulation of CD40, CD86 and PD-L2 on monocytes in relation to clinical response to interferon-beta treatment in patients with multiple sclerosis. Mult Scler 2008, 14:166-176.
- [35]Espejo C, Brieva L, Ruggiero G, Rio J, Montalban X, Martinez-Caceres EM: IFN-beta treatment modulates the CD28/CTLA-4-mediated pathway for IL-2 production in patients with relapsing-remitting multiple sclerosis. Mult Scler 2004, 10:630-635.
- [36]Rudick RA, Goelz SE: Beta-interferon for multiple sclerosis. Exp Cell Res 2011, 317:1301-1311.
- [37]nterferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group Neurology 1993, 43:655-661.
- [38]Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. The IFNB Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group Neurology 1995, 45:1277-1285.
- [39]Izumo S, Goto I, Itoyama Y, Okajima T, Watanabe S, Kuroda Y, Araki S, Mori M, Nagataki S, Matsukura S, et al.: Interferon-alpha is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial. Neurology 1996, 46:1016-1021.
- [40]Shibayama K, Nakamura T, Nagasato K, Shirabe S, Tsujihata M, Nagataki S: Interferon-alpha treatment in HTLV-I-associated myelopathy Studies of clinical and immunological aspects. J Neurol Sci 1991, 106:186-192.
- [41]Osame M: Review of WHO Kagoshima meeting and diagnostic guidelines for HAM/TSP. New York: Raven Press; 1990.
- [42]Grassi MF, Olavarria VN: Kruschewsky Rde A, Mascarenhas RE, Dourado I, Correia LC, De Castro-Costa CM, Galvao-Castro B: Human T cell lymphotropic virus type 1 (HTLV-1) proviral load of HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients according to new diagnostic criteria of HAM/TSP. J Med Virol 2011, 83:1269-1274.
- [43]Adaui V, Verdonck K, Best I, Gonzalez E, Tipismana M, Arevalo J, Vanham G, Campos M, Zimic M, Gotuzzo E: SYBR Green-based quantitation of human T-lymphotropic virus type 1 proviral load in Peruvian patients with neurological disease and asymptomatic carriers: influence of clinical status, sex, and familial relatedness. J Neurovirol 2006, 12:456-465.
- [44]Olindo S, Lezin A, Cabre P, Merle H, Saint-Vil M, Edimonana Kaptue M, Signate A, Cesaire R, Smadja D: HTLV-1 proviral load in peripheral blood mononuclear cells quantified in 100 HAM/TSP patients: a marker of disease progression. J Neurol Sci 2005, 237:53-59.
- [45]Gotuzzo E, Cabrera J, Deza L, Verdonck K, Vandamme AM, Cairampoma R, Vizcarra D, Cabada M, Narvarte G, De las Casas C: Clinical characteristics of patients in Peru with human T cell lymphotropic virus type 1-associated tropical spastic paraparesis. Clin Infect Dis 2004, 39:939-944.
- [46]Lima MA, Bica RB, Araujo AQ: Gender influence on the progression of HTLV-I associated myelopathy/tropical spastic paraparesis. J Neurol Neurosurg Psychiatry 2005, 76:294-296.
- [47]Norris PJ, Hirschkorn DF, DeVita DA, Lee TH, Murphy EL: Human T cell leukemia virus type 1 infection drives spontaneous proliferation of natural killer cells. Virulence 2010, 1:19-28.
- [48]Furukawa Y, Bangham CR, Taylor GP, Weber JN, Osame M: Frequent reversible membrane damage in peripheral blood B cells in human T cell lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Clin Exp Immunol 2000, 120:307-316.
- [49]Liu Z, Pelfrey CM, Cotleur A, Lee JC, Rudick RA: Immunomodulatory effects of interferon beta-1a in multiple sclerosis. J Neuroimmunol 2001, 112:153-162.
- [50]Ramgolam VS, Sha Y, Marcus KL, Choudhary N, Troiani L, Chopra M, Markovic-Plese S: B cells as a therapeutic target for IFN-beta in relapsing-remitting multiple sclerosis. J Immunol 2011, 186:4518-4526.
- [51]Saito M, Matsuzaki T, Satou Y, Yasunaga J, Saito K, Arimura K, Matsuoka M, Ohara Y: In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 2009, 6:19. BioMed Central Full Text
- [52]Yamano Y, Araya N, Sato T, Utsunomiya A, Azakami K, Hasegawa D, Izumi T, Fujita H, Aratani S, Yagishita N, et al.: Abnormally high levels of virus-infected IFN-gamma + CCR4+ CD4+ CD25+ T cells in a retrovirus-associated neuroinflammatory disorder. PLoS One 2009, 4:e6517.
- [53]O’Neill SK, Cao Y, Hamel KM, Doodes PD, Hutas G, Finnegan A: Expression of CD80/86 on B cells is essential for autoreactive T cell activation and the development of arthritis. J Immunol 2007, 179:5109-5116.
- [54]Morbach H, Wiegering V, Richl P, Schwarz T, Suffa N, Eichhorn EM, Eyrich M, Girschick HJ: Activated memory B cells may function as antigen-presenting cells in the joints of children with juvenile idiopathic arthritis. Arthritis Rheum 2011, 63:3458-3466.
- [55]Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH: B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995, 80:707-718.
- [56]Brown JA, Greenwald RJ, Scott S, Schweitzer AN, Satoskar AR, Chung C, Schopf LR, van der Woude D, Sypek JP, Sharpe AH: T helper differentiation in resistant and susceptible B7-deficient mice infected with Leishmania major. Eur J Immunol 2002, 32:1764-1772.
- [57]Mbow ML, DeKrey GK, Titus RG: Leishmania major induces differential expression of costimulatory molecules on mouse epidermal cells. Eur J Immunol 2001, 31:1400-1409.
- [58]Furukawa Y, Mandelbrot DA, Libby P, Sharpe AH, Mitchell RN: Association of B7-1 co-stimulation with the development of graft arterial disease: studies using mice lacking B7-1, B7-2, or B7-1/B7-2. Am J Pathol 2000, 157:473-484.
- [59]Newton S, Ding Y, Chung CS, Chen Y, Lomas-Neira JL, Ayala A: Sepsis-induced changes in macrophage co-stimulatory molecule expression: CD86 as a regulator of anti-inflammatory IL-10 response. Surg Infect (Larchmt) 2004, 5:375-383.
- [60]Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S, Karulf MR, Rom WN, Weiden MD, Gold JA: Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS One 2009, 4:e6600.
- [61]Nolan A, Weiden M, Kelly A, Hoshino Y, Hoshino S, Mehta N, Gold JA: CD40 and CD80/86 act synergistically to regulate inflammation and mortality in polymicrobial sepsis. Am J Respir Crit Care Med 2008, 177:301-308.
- [62]Sellebjerg F, Jensen J, Ryder LP: Costimulatory CD80 (B7-1) and CD86 (B7-2) on cerebrospinal fluid cells in multiple sclerosis. J Neuroimmunol 1998, 84:179-187.
- [63]Svenningsson A, Dotevall L, Stemme S, Andersen O: Increased expression of B7-1 costimulatory molecule on cerebrospinal fluid cells of patients with multiple sclerosis and infectious central nervous system disease. J Neuroimmunol 1997, 75:59-68.
- [64]Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, Hafler DA: Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 1995, 182:1985-1996.
- [65]Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, et al.: Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476:214-219.
- [66]Keir ME, Butte MJ, Freeman GJ, Sharpe AH: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008, 26:677-704.
- [67]Sharpe AH, Freeman GJ: The B7-CD28 superfamily. Nat Rev Immunol 2002, 2:116-126.
- [68]Montanheiro PA, de Oliveira ACP, Smid J, Fukumori LM, Olah I, da S Duarte AJ, Casseb J: The elevated interferon gamma production is an important immunological marker in HAM/TSP pathogenesis. Scand J Immunol 2009, 70:403-407.
- [69]Luna T, Santos SB, Nascimento M, Porto MA, Muniz AL, Carvalho EM, Jesus AR: Effect of TNF-alpha production inhibitors on the production of pro-inflammatory cytokines by peripheral blood mononuclear cells from HTLV-1-infected individuals. Braz J Med Biol Res 2011, 44:1134-1140.
- [70]Moens B, Decanine D, Menezes SM, Khouri R, Silva-Santos G, Lopez G, Alvarez C, Talledo M, Gotuzzo E, de Almeida KR, et al.: Ascorbic acid has superior ex vivo antiproliferative, cell death-inducing and immunomodulatory effects over IFN-alpha in HTLV-1-associated myelopathy. PLoS Negl Trop Dis 2012, 6:e1729.
- [71]Moldovan IR, Rudick RA, Cotleur AC, Born SE, Lee JC, Karafa MT, Pelfrey CM: Interferon gamma responses to myelin peptides in multiple sclerosis correlate with a new clinical measure of disease progression. J Neuroimmunol 2003, 141:132-140.
- [72]Panitch HS, Hirsch RL, Haley AS, Johnson KP: Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987, 1:893-895.
- [73]Cross AH, Girard TJ, Giacoletto KS, Evans RJ, Keeling RM, Lin RF, Trotter JL, Karr RW: Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation. J Clin Invest 1995, 95:2783-2789.
- [74]Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, Yao S, Tsushima F, Narazaki H, Anand S, et al.: B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 2010, 116:1291-1298.
- [75]Hirata S, Senju S, Matsuyoshi H, Fukuma D, Uemura Y, Nishimura Y: Prevention of experimental autoimmune encephalomyelitis by transfer of embryonic stem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptide along with TRAIL or programmed death-1 ligand. J Immunol 2005, 174:1888-1897.
- [76]Zhao J, Freeman GJ, Gray GS, Nadler LM, Glimcher LH: A cell type-specific enhancer in the human B7.1 gene regulated by NF-kappaB. J Exp Med 1996, 183:777-789.
- [77]Paun A, Pitha PM: The IRF family, revisited. Biochimie 2007, 89:744-753.
- [78]Waddell SJ, Popper SJ, Rubins KH, Griffiths MJ, Brown PO, Levin M, Relman DA: Dissecting interferon-induced transcriptional programs in human peripheral blood cells. PLoS One 2010, 5:e9753.
- [79]Pahl HL: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999, 18:6853-6866.
- [80]Chen G, Goeddel DV: TNF-R1 signaling: a beautiful pathway. Science 2002, 296:1634-1635.
- [81]Li J, Colovai AI, Cortesini R, Suciu-Foca N: Cloning and functional characterization of the 5′-regulatory region of the human CD86 gene. Hum Immunol 2000, 61:486-498.
- [82]Panitch HS: Systemic alpha-interferon in multiple sclerosis: long-term patient follow-up. Arch Neurol 1987, 44:61-63.
- [83]Satou Y, Yasunaga J, Yoshida M, Matsuoka M: HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 2006, 103:720-725.
- [84]Azran I, Schavinsky-Khrapunsky Y, Aboud M: Role of tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology 2004, 1:20. BioMed Central Full Text
- [85]Szymocha R, Akaoka H, Brisson C, Beurton-Marduel P, Chalon A, Bernard A, Didier-Bazes M, Belin MF, Giraudon P: Astrocytic alterations induced by HTLV type 1-infected T lymphocytes: a role for tax-1 and tumor necrosis factor alpha. AIDS Res Hum Retroviruses 2000, 16:1723-1729.
- [86]Szymocha R, Akaoka H, Dutuit M, Malcus C, Didier-Bazes M, Belin MF, Giraudon P: Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via tax-1 and tumor necrosis factor alpha. J Virol 2000, 74:6433-6441.
- [87]Brown DA, Nelson FB, Reinherz EL, Diamond DJ: The human interferon-gamma gene contains an inducible promoter that can be transactivated by tax I and II. Eur J Immunol 1991, 21:1879-1885.
- [88]Podojil JR, Kohm AP, Miller SD: CD4+ T cell expressed CD80 regulates central nervous system effector function and survival during experimental autoimmune encephalomyelitis. J Immunol 2006, 177:2948-2958.
- [89]Marckmann S, Wiesemann E, Hilse R, Trebst C, Stangel M, Windhagen A: Interferon-beta up-regulates the expression of co-stimulatory molecules CD80, CD86 and CD40 on monocytes: significance for treatment of multiple sclerosis. Clin Exp Immunol 2004, 138:499-506.
- [90]Santos SB, Porto AF, Muniz AL, de Jesus AR, Magalhaes E, Melo A, Dutra WO, Gollob KJ, Carvalho EM: Exacerbated inflammatory cellular immune response characteristics of HAM/TSP is observed in a large proportion of HTLV-I asymptomatic carriers. BMC Infect Dis 2004, 4:article 7. BioMed Central Full Text
- [91]Colisson R, Barblu L, Gras C, Raynaud F, Hadj-Slimane R, Pique C, Hermine O, Lepelletier Y, Herbeuval JP: Free HTLV-1 induces TLR7-dependent innate immune response and TRAIL relocalization in killer plasmacytoid dendritic cells. Blood 2010, 115:2177-2185.
- [92]Tattermusch S, Skinner JA, Chaussabel D, Banchereau J, Berry MP, McNab FW, O’Garra A, Taylor GP, Bangham CR: Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog 2012, 8:e1002480.
- [93]Feng J, Misu T, Fujihara K, Saito H, Takahashi T, Kohnosu T, Shiga Y, Takeda A, Sato S, Takase S, Itoyama Y: Interferon-alpha significantly reduces cerebrospinal fluid CD4 cell subsets in HAM/TSP. J Neuroimmunol 2003, 141:170-173.
- [94]Macchi B, Faraoni I, Mastino A, D’Onofrio C, Romeo G, Bonmassar E: Protective effect of interferon beta on human T cell leukaemia virus type I infection of CD4+ T cells isolated from human cord blood. Cancer Immunol Immunother 1993, 37:97-104.
- [95]D’Onofrio C, Perno CF, Mazzetti P, Graziani G, Calio R, Bonmassar E: Depression of early phase of HTLV-I infection in vitro mediated by human beta-interferon. Br J Cancer 1988, 57:481-488.
- [96]Arnason BG: Long-term experience with interferon beta-1b (Betaferon) in multiple sclerosis. J Neurol 2005, 252(3):iii28-iii33.
- [97]Weinstock-Guttman B, Ramanathan M, Zivadinov R: Interferon-beta treatment for relapsing multiple sclerosis. Expert Opin Biol Ther 2008, 8:1435-1447.
- [98]McKeage K: Interferon-beta-1b: in newly emerging multiple sclerosis. CNS Drugs 2008, 22:787-792.
- [99]Mirowska D, Skierski J, Paz A, Koronkiewicz M, Zaborski J, Kruszewska J, Czlonkowski A, Czlonkowska A: Changes of percentages in immune cells phenotypes and cytokines production during two-year IFN-beta-1a treatment in multiple sclerosis patients. J Neurol 2003, 250:1229-1236.
- [100]Revel M, Chebath J, Mangelus M, Harroch S, Moviglia GA: Antagonism of interferon beta on interferon gamma: inhibition of signal transduction in vitro and reduction of serum levels in multiple sclerosis patients. Mult Scler 1995, 1(1):S5-S11.
- [101]Noronha A, Toscas A, Jensen MA: Interferon beta decreases T cell activation and interferon gamma production in multiple sclerosis. J Neuroimmunol 1993, 46:145-153.
- [102]Van Weyenbergh J, Lipinski P, Abadie A, Chabas D, Blank U, Liblau R, Wietzerbin J: Antagonistic action of IFN-beta and IFN-gamma on high affinity Fc gamma receptor expression in healthy controls and multiple sclerosis patients. J Immunol 1998, 161:1568-1574.
- [103]Zhao T, Yasunaga J, Satou Y, Nakao M, Takahashi M, Fujii M, Matsuoka M: Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood 2009, 113:2755-2764.
- [104]Barbeau B, Mesnard JM: Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). Viruses 2011, 3:456-468.
- [105]Karp CL, van Boxel-Dezaire AH, Byrnes AA, Nagelkerken L: Interferon-beta in multiple sclerosis: altering the balance of interleukin-12 and interleukin-10? Curr Opin Neurol 2001, 14:361-368.
- [106]Wang X, Chen M, Wandinger KP, Williams G, Dhib-Jalbut S: IFN-beta-1b inhibits IL-12 production in peripheral blood mononuclear cells in an IL-10-dependent mechanism: relevance to IFN-beta-1b therapeutic effects in multiple sclerosis. J Immunol 2000, 165:548-557.
- [107]Marijanovic Z, Ragimbeau J, van der Heyden J, Uze G, Pellegrini S: Comparable potency of IFNalpha2 and IFNbeta on immediate JAK/STAT activation but differential down-regulation of IFNAR2. Biochem J 2007, 407:141-151.
- [108]Roisman LC, Jaitin DA, Baker DP, Schreiber G: Mutational analysis of the IFNAR1 binding site on IFNalpha2 reveals the architecture of a weak ligand-receptor binding-site. J Mol Biol 2005, 353:271-281.
- [109]Domanski P, Nadeau OW, Platanias LC, Fish E, Kellum M, Pitha P, Colamonici OR: Differential use of the betaL subunit of the type I interferon (IFN) receptor determines signaling specificity for IFNalpha2 and IFNbeta. J Biol Chem 1998, 273:3144-3147.
- [110]de Weerd NA, Vivian JP, Nguyen TK, Mangan NE, Gould JA, Braniff SJ, Zaker-Tabrizi L, Fung KY, Forster SC, Beddoe T, et al.: Structural basis of a unique interferon-beta signaling axis mediated via the receptor IFNAR1. Nat Immunol 2013, 14:901-907.
- [111]Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD: How cells respond to interferons. Annu Rev Biochem 1998, 67:227-264.
- [112]Muller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O, Harpur AG, Barbieri G, Witthuhn BA, Schindler C, et al.: The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature 1993, 366:129-135.
- [113]Velazquez L, Fellous M, Stark GR, Pellegrini S: A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992, 70:313-322.
- [114]Pellegrini S, John J, Shearer M, Kerr IM, Stark GR: Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol Cell Biol 1989, 9:4605-4612.
- [115]Couturier N, Bucciarelli F, Nurtdinov RN, Debouverie M, Lebrun-Frenay C, Defer G, Moreau T, Confavreux C, Vukusic S, Cournu-Rebeix I, et al.: Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain 2011, 134:693-703.
- [116]Grumbach IM, Fish EN, Uddin S, Majchrzak B, Colamonici OR, Figulla HR, Heim A, Platanias LC: Activation of the Jak-Stat pathway in cells that exhibit selective sensitivity to the antiviral effects of IFN-beta compared with IFN-alpha. J Interferon Cytokine Res 1999, 19:797-801.
- [117]da Silva AJ, Brickelmaier M, Majeau GR, Lukashin AV, Peyman J, Whitty A, Hochman PS: Comparison of gene expression patterns induced by treatment of human umbilical vein endothelial cells with IFN-alpha 2b vs. IFN-beta 1a: understanding the functional relationship between distinct type I interferons that act through a common receptor. J Interferon Cytokine Res 2002, 22:173-188.
- [118]Sancéau J, Hiscott J, Delattre O, Wietzerbin J: IFN-beta induces serine phosphorylation of Stat-1 in Ewing’s sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene 2000, 19:3372-3383.
- [119]Coro ES, Chang WL, Baumgarth N: Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J Immunol 2006, 176:4343-4351.
- [120]Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR: A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 2010, 467:214-217.
- [121]Guo B, Chang EY, Cheng G: The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 2008, 118:1680-1690.
- [122]Teige I, Treschow A, Teige A, Mattsson R, Navikas V, Leanderson T, Holmdahl R, Issazadeh-Navikas S: IFN-beta gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J Immunol 2003, 170:4776-4784.
- [123]Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, Marrack P: Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c B-cell population is important for the development of autoimmunity. Blood 2011, 118:1305-1315.
- [124]Calderón-Gómez E, Lampropoulou V, Shen P, Neves P, Roch T, Stervbo U, Rutz S, Kuhl AA, Heppner FL, Loddenkemper C, et al.: Reprogrammed quiescent B cells provide an effective cellular therapy against chronic experimental autoimmune encephalomyelitis. Eur J Immunol 2011, 41:1696-1708.
- [125]Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P: Cohen Tervaert JW, Hupperts R, Damoiseaux J: Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 2011, 239:80-86.
- [126]Brito-Melo GE, Souza JG, Barbosa-Stancioli EF, Carneiro-Proietti AB, Catalan-Soares B, Ribas JG, Thorum GW, Rocha RD, Martins-Filho OA: Establishing phenotypic features associated with morbidity in human T-cell lymphotropic virus type 1 infection. Clin Diagn Lab Immunol 2004, 11:1105-1110.
- [127]Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA: Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006, 180:63-70.
- [128]Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK: Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 2005, 62:258-264.
- [129]Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, et al.: B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008, 358:676-688.
- [130]Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, Yin M, Leppert D, Glanzman R, Tinbergen J, Hauser SL: Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011, 378:1779-1787.
- [131]Gottlieb AB, Kang S, Linden KG, Lebwohl M, Menter A, Abdulghani AA, Goldfarb M, Chieffo N, Totoritis MC: Evaluation of safety and clinical activity of multiple doses of the anti-CD80 monoclonal antibody, galiximab, in patients with moderate to severe plaque psoriasis. Clin Immunol 2004, 111:28-37.
- [132]Czuczman MS, Thall A, Witzig TE, Vose JM, Younes A, Emmanouilides C, Miller TP, Moore JO, Leonard JP, Gordon LI, et al.: Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol 2005, 23:4390-4398.
PDF