期刊论文详细信息
International Journal of Pediatric Endocrinology
Genetic factors associated with small for gestational age birth and the use of human growth hormone in treating the disorder
Edward Reiter1  Paul Saenger2 
[1] Baystate Children’s Hospital, Tufts University School of Medicine, 759 Chestnut Street, Springfield, MA, 01199, USA;Albert Einstein College of Medicine, Winthrop University Hospital, 120 Mineola Boulevard, Mineola, NY, 13501, USA
关键词: Uniparental disomy;    Acid-labile subunit deficiency;    Insulin-like growth factor;    Small for gestational age;    Growth hormone;   
Others  :  813532
DOI  :  10.1186/1687-9856-2012-12
 received in 2011-10-06, accepted in 2012-03-19,  发布年份 2012
PDF
【 摘 要 】

The term small for gestational age (SGA) refers to infants whose birth weights and/or lengths are at least two standard deviation (SD) units less than the mean for gestational age. This condition affects approximately 3%–10% of newborns. Causes for SGA birth include environmental factors, placental factors such as abnormal uteroplacental blood flow, and inherited genetic mutations. In the past two decades, an enhanced understanding of genetics has identified several potential causes for SGA. These include mutations that affect the growth hormone (GH)/insulin-like growth factor (IGF)-1 axis, including mutations in the IGF-1 gene and acid-labile subunit (ALS) deficiency. In addition, select polymorphisms observed in patients with SGA include those involved in genes associated with obesity, type 2 diabetes, hypertension, ischemic heart disease and deletion of exon 3 growth hormone receptor (d3-GHR) polymorphism. Uniparental disomy (UPD) and imprinting effects may also underlie some of the phenotypes observed in SGA individuals. The variety of genetic mutations associated with SGA births helps explain the diversity of phenotype characteristics, such as impaired motor or mental development, present in individuals with this disorder. Predicting the effectiveness of recombinant human GH (hGH) therapy for each type of mutation remains challenging. Factors affecting response to hGH therapy include the dose and method of hGH administration as well as the age of initiation of hGH therapy. This article reviews the results of these studies and summarizes the success of hGH therapy in treating this difficult and genetically heterogenous disorder.

【 授权许可】

   
2012 Saenger and Reiter; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710004945601.pdf 582KB PDF download
Figure 2. 47KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Saenger P, Czernichow P, Hughes I, Reiter EO: Small for gestational age: short stature and beyond. Endocr Rev 2007, 28(2):219-251.
  • [2]Clayton PE, Cianfarani S, Czernichow P, Johannsson G, Rapaport R, Rogol A: Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab 2007, 92(3):804-810.
  • [3]Lee PA, Chernausek SD, Hokken-Koelega AC, Czernichow P: International Small for Gestational Age Advisory Board consensus development conference statement: management of short children born small for gestational age, April 24-October 1, 2001. Pediatrics 2003, 111(6 Pt 1):1253-1261.
  • [4]Arya AD: Small for gestation and growth hormone therapy. Indian J Pediatr 2006, 73(1):73-78.
  • [5]Rapaport R, Tuvemo T: Growth and growth hormone in children born small for gestational age. Acta Paediatr 2005, 94(10):1348-1355.
  • [6]Hediger ML, Overpeck MD, Maurer KR, Kuczmarski RJ, McGlynn A, Davis WW: Growth of infants and young children born small or large for gestational age: findings from the Third National Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med 1998, 152(12):1225-1231.
  • [7]Karlberg J, Albertsson-Wikland K: Growth in full-term small-for-gestational-age infants: from birth to final height. Pediatr Res 1995, 38(5):733-739.
  • [8]Hokken-Koelega AC, De Ridder MA, Lemmen RJ, Den Hartog H, De Muinck Keizer-Schrama SM, Drop SL: Children born small for gestational age: do they catch up? Pediatr Res 1995, 38(2):267-271.
  • [9]The Growth Genetics Consortium. Available athttp://www.growthgeneticsconsortium.org/index.html webcite Accessed February 15, 2012.
  • [10]Le Roith D: Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med 1997, 336(9):633-640.
  • [11]Woods KA, Camacho-Hubner C, Savage MO, Clark AJ: Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 1996, 335(18):1363-1367.
  • [12]Woods KA, Camacho-Hubner C, Bergman RN, Barter D, Clark AJ, Savage MO: Effects of insulin-like growth factor I (IGF-I) therapy on body composition and insulin resistance in IGF-I gene deletion. J Clin Endocrinol Metab 2000, 85(4):1407-1411.
  • [13]Bonapace G, Concolino D, Formicola S, Strisciuglio P: A novel mutation in a patient with insulin-like growth factor 1 (IGF1) deficiency. J Med Genet 2003, 40(12):913-917.
  • [14]Coutinho DC, Coletta RR, Costa EM, Pachi PR, Boguszewski MC, Damiani D, Mendonca BB, Arnhold IJ, Jorge AA: Polymorphisms identified in the upstream core polyadenylation signal of IGF1 gene exon 6 do not cause pre- and postnatal growth impairment. J Clin Endocrinol Metab 2007, 92(12):4889-4892.
  • [15]van Gemund JJ, Laurent de Angulo MS, van Gelderen HH: Familial prenatal dwarfism with elevated serum immuno-reactive growth hormone levels and end-organ unresponsiveness. Maandschr Kindergeneeskd 1970, 37(11):372-382.
  • [16]Walenkamp MJ, Karperien M, Pereira AM, Hilhorst-Hofstee Y, van Doorn J, Chen JW, Mohan S, Denley A, Forbes B, van Duyvenvoorde HA, van Thiel SW, Sluimers CA, Bax JJ, de Laat JA, Breuning MB, Romijn JA, Wit JM: Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab 2005, 90(5):2855-2864.
  • [17]Denley A, Wang CC, McNeil KA, Walenkamp MJ, van DH, Wit JM, Wallace JC, Norton RS, Karperien M, Forbes BE: Structural and functional characteristics of the Val44Met insulin-like growth factor I missense mutation: correlation with effects on growth and development. Mol Endocrinol 2005, 19(3):711-721.
  • [18]Netchine I, Azzi S, Houang M, Seurin D, Perin L, Ricort JM, Daubas C, Legay C, Mester J, Herich R, Godeau F, Le Bouc Y: Partial IGF-1 deficiency demonstrates the critical role of IGF-1 in growth and brain development. [abstract]. Horm Res 2006, 65(suppl 4):29.
  • [19]Netchine I, Azzi S, Houang M, Seurin D, Perin L, Ricort JM, Daubas C, Legay C, Mester J, Herich R, Godeau F, Le Bouc Y: Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development. J Clin Endocrinol Metab 2009, 94(10):3913-3921.
  • [20]Netchine I, Azzi S, Le Bouc Y, Savage MO: IGF1 molecular anomalies demonstrate its critical role in fetal, postnatal growth and brain development. Best Pract Res Clin Endocrinol Metab 2011, 25(1):181-190.
  • [21]Graul AI, Prous JR: The year’s new drugs. Drug News Perspect 2006, 19(1):33-53.
  • [22]Klammt J, Kiess W, Pfaffle R: IGF1R mutations as cause of SGA. Best Pract Res Clin Endocrinol Metab 2011, 25(1):191-206.
  • [23]Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD: IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 2003, 349(23):2211-2222.
  • [24]Raile K, Klammt J, Schneider A, Keller A, Laue S, Smith R, Pfaffle R, Kratzsch J, Keller E, Kiess W: Clinical and functional characteristics of the human Arg59Ter insulin-like growth factor i receptor (IGF1R) mutation: implications for a gene dosage effect of the human IGF1R. J Clin Endocrinol Metab 2006, 91(6):2264-2271.
  • [25]Kawashima Y, Kanzaki S, Yang F, Kinoshita T, Hanaki K, Nagaishi J, Ohtsuka Y, Hisatome I, Ninomoya H, Nanba E, Fukushima T, Takahashi S: Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation. J Clin Endocrinol Metab 2005, 90(8):4679-4687.
  • [26]Walenkamp MJ, van der Kamp HJ, Pereira AM, Kant SG, van Duyvenvoorde HA, Kruithof MF, Breuning MH, Romijn JA, Karperien M, Wit JM: A variable degree of intrauterine and postnatal growth retardation in a family with a missense mutation in the insulin-like growth factor I receptor. J Clin Endocrinol Metab 2006, 91(8):3062-3070.
  • [27]Inagaki K, Tiulpakov A, Rubtsov P, Sverdlova P, Peterkova V, Yakar S, Terekhov S, LeRoith D: A familial insulin-like growth factor-I receptor mutant leads to short stature: clinical and biochemical characterization. J Clin Endocrinol Metab 2007, 92(4):1542-1548.
  • [28]Kruis T, Klammt J, Galli-Tsinopoulou A, Wallborn T, Schlicke M, Muller E, Kratzsch J, Korner A, Odeh R, Kiess W, Pfaffle R: Heterozygous mutation within a kinase-conserved motif of the insulin-like growth factor I receptor causes intrauterine and postnatal growth retardation. J Clin Endocrinol Metab 2010, 95(3):1137-1142.
  • [29]Wallborn T, Wuller S, Klammt J, Kruis T, Kratzsch J, Schmidt G, Schlicke M, Muller E, van de Leur HS, Kiess W, Pfaffle R: A heterozygous mutation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J Clin Endocrinol Metab 2010, 95(5):2316-2324.
  • [30]Knoll JH, Nicholls RD, Magenis RE, Graham JM Jr, Lalande M, Latt SA: Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J Med Genet 1989, 32(2):285-290.
  • [31]Pinson L, Perrin A, Plouzennec C, Parent P, Metz C, Collet M, Le Bris MJ, Douet-Guilbert N, Morel F, de Braekeleer M: Detection of an unexpected subtelomeric 15q26.2 – > qter deletion in a little girl: clinical and cytogenetic studies. Am J Med Genet A 2005, 138A(2):160-165.
  • [32]Peoples R, Milatovich A, Francke U: Hemizygosity at the insulin-like growth factor I receptor (IGF1R) locus and growth failure in the ring chromosome 15 syndrome. Cytogenet Cell Genet 1995, 70(3–4):228-234.
  • [33]Choi JH, Kang M, Kim GH, Hong M, Jin HY, Lee BH, Park JY, Lee SM, Seo EJ, Yoo HW: Clinical and functional characteristics of a novel heterozygous mutation of the IGF1R gene and IGF1R haploinsufficiency due to terminal 15q26.2- > qter deletion in patients with intrauterine growth retardation and postnatal catch-up growth failure. J Clin Endocrinol Metab 2011, 96(1):E130-E134.
  • [34]Rujirabanjerd S, Suwannarat W, Sripo T, Dissaneevate P, Permsirivanich W, Limprasert P: De novo subtelomeric deletion of 15q associated with satellite translocation in a child with developmental delay and severe growth retardation. Am J Med Genet A 2007, 143(3):271-276.
  • [35]Veenma DC, Eussen HJ, Govaerts LC, de Kort SW, Odink RJ, Wouters CH, Hokken-Koelega AC, de Klein A: Phenotype-genotype correlation in a familial IGF1R microdeletion case. J Med Genet 2010, 47(7):492-498.
  • [36]Walenkamp MJ, de Muinck Keizer-Schrama SM, de Mos M, Kalf ME, van Duyvenvoorde HA, Boot AM, Kant SG, White SJ, Losekoot M, den Dunnen JT, Karperien M, Wit JM: Successful long-term growth hormone therapy in a girl with haploinsufficiency of the insulin-like growth factor-I receptor due to a terminal 15q26.2->qter deletion detected by multiplex ligation probe amplification. J Clin Endocrinol Metab 2008, 93(6):2421-2425.
  • [37]Ester WA, van Duyvenvoorde HA, de Wit CC, Broekman AJ, Ruivenkamp CA, Govaerts LC, Wit JM, Hokken-Koelega AC, Losekoot M: Two short children born small for gestational age with insulin-like growth factor 1 receptor haploinsufficiency illustrate the heterogeneity of its phenotype. J Clin Endocrinol Metab 2009, 94(12):4717-4727.
  • [38]Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT: The acid-labile subunit (ALS) of the 150kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 2001, 170(1):63-70.
  • [39]Domene HM, Hwa V, Jasper HG, Rosenfeld RG: Acid-labile subunit (ALS) deficiency. Best Pract Res Clin Endocrinol Metab 2011, 25(1):101-113.
  • [40]Domene HM, Bengolea SV, Martinez AS, Ropelato MG, Pennisi P, Scaglia P, Heinrich JJ, Jasper HG: Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med 2004, 350(6):570-577.
  • [41]Domene HM, Scaglia PA, Lteif A, Mahmud FH, Kirmani S, Frystyk J, Bedecarras P, Gutierrez M, Jasper HG: Phenotypic effects of null and haploinsufficiency of acid-labile subunit in a family with two novel IGFALS gene mutations. J Clin Endocrinol Metab 2007, 92(11):4444-4450.
  • [42]Heath KE, Argente J, Barrios V, Pozo J, az-Gonzalez F, Martos-Moreno GA, Caimari M, Gracia R, Campos-Barros A: Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. J Clin Endocrinol Metab 2008, 93(5):1616-1624.
  • [43]van Duyvenvoorde HA, Kempers MJ, Twickler TB, van Doorn J, Gerver WJ, Noordam C, Losekoot M, Karperien M, Wit JM, Hermus AR: Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit. Eur J Endocrinol 2008, 159(2):113-120.
  • [44]Fofanova-Gambetti OV, Hwa V, Kirsch S, Pihoker C, Chiu HK, Hogler W, Cohen LE, Jacobsen C, Derr MA, Rosenfeld RG: Three novel IGFALS gene mutations resulting in total ALS and severe circulating IGF-I/IGFBP-3 deficiency in children of different ethnic origins. Horm Res 2009, 71(2):100-110.
  • [45]David A, Rose SJ, Miraki-Moud F, Metherell LA, Savage MO, Clark AJ, Camacho-Hubner C: Acid-labile subunit deficiency and growth failure: description of two novel cases. Horm Res Paediatr 2010, 73(5):328-334.
  • [46]Bang P, Fureman A-L, Nilsson A-L, Bostrom J, Berit K, Ekstrom K, Hwa V, Grosenfeld R, Carlsson-Skwirut C: A novel missense mutation of the ALSIGF gene causing a L172F substitution in LRR6 is associated with short stature in two Swedish children homozygous or compound heterozygous for the mutation. Horm Res 2009, 72(suppl 3):86.
  • [47]Gallego-Gomez E, Sanchez del Pozo J, Cruz Rojo J, Zurita-Munoz O, Gracia-Bouthelier R, Heath KE, Campos-Barros A: Novel compound heterozygous IGFALS mutation associated with impaired postnatal growth and low circulating IGF-I and IGFBP-3 levels. Horm Res 2009, 72(suppl 3):90-91.
  • [48]Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD: Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991, 303(6809):1019-1022.
  • [49]Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM: Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993, 36(1):62-67.
  • [50]Parsons TJ, Power C, Manor O: Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ 2001, 323(7325):1331-1335.
  • [51]Morgan AR, Thompson JM, Murphy R, Black PN, Lam WJ, Ferguson LR, Mitchell EA: Obesity and diabetes genes are associated with being born small for gestational age: results from the Auckland Birthweight Collaborative study. BMC Med Genet 2010, 11:125. BioMed Central Full Text
  • [52]Gardes J, Bouhnik J, Clauser E, Corvol P, Menard J: Role of angiotensinogen in blood pressure homeostasis. Hypertension 1982, 4(2):185-189.
  • [53]Ward K, Hata A, Jeunemaitre X, Helin C, Nelson L, Namikawa C, Farrington PF, Ogasawara M, Suzumori K, Tomoda S, Berrebi S, Sasaki M, Corvol P, Lifton RP, Lalouel JM: A molecular variant of angiotensinogen associated with preeclampsia. Nat Genet 1993, 4(1):59-61.
  • [54]Zhang XQ, Varner M, Dizon-Townson D, Song F, Ward K: A molecular variant of angiotensinogen is associated with idiopathic intrauterine growth restriction. Obstet Gynecol 2003, 101(2):237-242.
  • [55]Tower C, Chappell S, Kalsheker N, Baker P, Morgan L: Angiotensinogen gene variants and small-for-gestational-age infants. BJOG 2006, 113(3):335-339.
  • [56]Pantel J, Machinis K, Sobrier ML, Duquesnoy P, Goossens M, Amselem S: Species-specific alternative splice mimicry at the growth hormone receptor locus revealed by the lineage of retroelements during primate evolution. J Biol Chem 2000, 275(25):18664-18669.
  • [57]Dos Santos C, Essioux L, Teinturier C, Tauber M, Goffin V, Bougneres P: A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat Genet 2004, 36(7):720-724.
  • [58]Binder G, Baur F, Schweizer R, Ranke MB: The d3-growth hormone (GH) receptor polymorphism is associated with increased responsiveness to GH in Turner syndrome and short small-for-gestational-age children. J Clin Endocrinol Metab 2006, 91(2):659-664.
  • [59]Blum WF, Machinis K, Shavrikova EP, Keller A, Stobbe H, Pfaeffle RW, Amselem S: The growth response to growth hormone (GH) treatment in children with isolated GH deficiency is independent of the presence of the exon 3-minus isoform of the GH receptor. J Clin Endocrinol Metab 2006, 91(10):4171-4174.
  • [60]Carrascosa A, Esteban C, Espadero R, Fernandez-Cancio M, Andaluz P, Clemente M, Audi L, Wollmann H, Fryklund L, Parodi L: The d3/fl-growth hormone (GH) receptor polymorphism does not influence the effect of GH treatment (66 microg/kg per day) or the spontaneous growth in short non-GH-deficient small-for-gestational-age children: results from a two-year controlled prospective study in 170 Spanish patients. J Clin Endocrinol Metab 2006, 91(9):3281-3286.
  • [61]Carrascosa A, Audi L, Esteban C, Fernandez-Cancio M, Andaluz P, Gussinye M, Clemente M, Yeste D, Albisu MA: Growth hormone (GH) dose, but not exon 3-deleted/full-length GH receptor polymorphism genotypes, influences growth response to two-year GH therapy in short small-for-gestational-age children. J Clin Endocrinol Metab 2008, 93(1):147-153.
  • [62]Wassenaar MJ, Dekkers OM, Pereira AM, Wit JM, Smit JW, Biermasz NR, Romijn JA: Impact of the exon 3-deleted growth hormone (GH) receptor polymorphism on baseline height and the growth response to recombinant human GH therapy in GH-deficient (GHD) and non-GHD children with short stature: a systematic review and meta-analysis. J Clin Endocrinol Metab 2009, 94(10):3721-3730.
  • [63]Dörr HG, Bettendorf M, Hauffa BP, Mehls O, Rohrer T, Stahnke N, Pfäffle R, Ranke MB: Different relationships between the first 2 years on growth hormone treatment and the d3-growth hormone receptor polymorphism in short small-for-gestational-age (SGA) children. Clin Endocrinol (Oxf) 2011, 75(5):656-660.
  • [64]Hoffmann K, Heller R: Uniparental disomies 7 and 14. Best Pract Res Clin Endocrinol Metab 2011, 25(1):77-100.
  • [65]Constancia M, Kelsey G, Reik W: Resourceful imprinting. Nature 2004, 432(7013):53-57.
  • [66]Silver HK, Kiyasu W, George J, Deamer WC: Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics 1953, 12(4):368-376.
  • [67]Russell A: A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med 1954, 47(12):1040-1044.
  • [68]Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE: The genetic aetiology of Silver-Russell syndrome. J Med Genet 2008, 45(4):193-199.
  • [69]Kamp GA, Mul D, Waelkens JJ, Jansen M, Delemarre-van de Waal HA, Verhoeven-Wind L, Frolich M, Oostdijk W, Wit JM: A randomized controlled trial of three years growth hormone and gonadotropin-releasing hormone agonist treatment in children with idiopathic short stature and intrauterine growth retardation. J Clin Endocrinol Metab 2001, 86(7):2969-2975.
  • [70]Hitchins MP, Stanier P, Preece MA, Moore GE: Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J Med Genet 2001, 38(12):810-819.
  • [71]Kotzot D, Schmitt S, Bernasconi F, Robinson WP, Lurie IW, Ilyina H, Mehes K, Hamel BC, Otten BJ, Hergersberg M, Werder E, Schoenle E, Schinzel A: Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation. Hum Mol Genet 1995, 4(4):583-587.
  • [72]Eggermann T, Wollmann HA, Kuner R, Eggermann K, Enders H, Kaiser P, Ranke MB: Molecular studies in 37 Silver-Russell syndrome patients: frequency and etiology of uniparental disomy. Hum Genet 1997, 100(3–4):415-419.
  • [73]Preece MA, Price SM, Davies V, Clough L, Stanier P, Trembath RC, Moore GE: Maternal uniparental disomy 7 in Silver-Russell syndrome. J Med Genet 1997, 34(1):6-9.
  • [74]Gicquel C, Rossignol S, Cabrol S, Houang M, Steunou V, Barbu V, Danton F, Thibaud N, Le Merrer M, Burglen L, Bertrand AM, Netchine I, Le Bouc Y: Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 2005, 37(9):1003-1007.
  • [75]Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, Houang M, Steunou V, Esteva B, Thibaud N, Demay MC, Danton F, Petriczko E, Bertrand AM, Heinrichs C, Carel JC, Loeuille GA, Pinto G, Jacquemont ML, Gicquel C, Cabrol S, Le BY: 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 2007, 92(8):3148-3154.
  • [76]Schonherr N, Meyer E, Roos A, Schmidt A, Wollmann HA, Eggermann T: The centromeric 11p15 imprinting centre is also involved in Silver-Russell syndrome. J Med Genet 2007, 44(1):59-63.
  • [77]Penaherrera MS, Weindler S, Van Allen MI, Yong SL, Metzger DL, McGillivray B, Boerkoel C, Langlois S, Robinson WP: Methylation profiling in individuals with Russell-Silver syndrome. Am J Med Genet A 2010, 152A(2):347-355.
  • [78]Eggermann T: Russell-Silver syndrome. Am J Med Genet C Semin Med Genet 2010, 154C(3):355-364.
  • [79]Georgiades P, Chierakul C, Ferguson-Smith AC: Parental origin effects in human trisomy for chromosome 14q: implications for genomic imprinting. J Med Genet 1998, 35(10):821-824.
  • [80]Kotzot D: Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprinting. Ann Genet 2004, 47(3):251-260.
  • [81]Simon D, Leger J, Carel JC: Optimal use of growth hormone therapy for maximizing adult height in children born small for gestational age. Best Pract Res Clin Endocrinol Metab 2008, 22(3):525-537.
  • [82]de Zegher F, Albertsson-Wikland K, Wollmann HA, Chatelain P, Chaussain JL, Lofstrom A, Jonsson B, Rosenfeld RG: Growth hormone treatment of short children born small for gestational age: growth responses with continuous and discontinuous regimens over 6 years. J Clin Endocrinol Metab 2000, 85(8):2816-2821.
  • [83]Czernichow P: Treatment with growth hormone in short children born with intrauterine growth retardation. Endocrine 2001, 15(1):39-42.
  • [84]Argente J, Gracia R, Ibanez L, Oliver A, Borrajo E, Vela A, Lopez-Siguero JP, Moreno ML, Rodriguez-Hierro F: Improvement in growth after two years of growth hormone therapy in very young children born small for gestational age and without spontaneous catch-up growth: results of a multicenter, controlled, randomized, open clinical trial. J Clin Endocrinol Metab 2007, 92(8):3095-3101.
  • [85]Dahlgren J, Wikland KA: Final height in short children born small for gestational age treated with growth hormone. Pediatr Res 2005, 57(2):216-222.
  • [86]Carel JC, Chatelain P, Rochiccioli P, Chaussain JL: Improvement in adult height after growth hormone treatment in adolescents with short stature born small for gestational age: results of a randomized controlled study. J Clin Endocrinol Metab 2003, 88(4):1587-1593.
  • [87]Ranke MB, Lindberg A, Cowell CT, Wikland KA, Reiter EO, Wilton P, Price DA: Prediction of response to growth hormone treatment in short children born small for gestational age: analysis of data from KIGS (Pharmacia International Growth Database). J Clin Endocrinol Metab 2003, 88(1):125-131.
  • [88]US Food and Drug Administration: FDA Drug Safety Communication: Ongoing safety review of recombinant human growth hormone (somatropin) and possible increased risk of death. Available athttp://www.fda.gov/Drugs/DrugSafety/ucm237773.htm#ds webcite Accessed February 15, 2012
  • [89]Sperling MA: Long-Term Therapy with Growth Hormone: Bringing Sagacity to SAGHE. J Clin Endocrinol Metab 2012, 97(1):81-83.
  • [90]Rosenfeld RG, Cohen P, Robison LL, Bercu BB, Clayton P, Hoffman AR, Radovick S, Saenger P, Savage MO, Wit JM: Long-term surveillance of growth hormone therapy. J Clin Endocrinol Metab 2012, 97(1):68-72.
  • [91]Wilton P, Mattsson AF, Darendeliler F: Growth hormone treatment in children is not associated with an increase in the incidence of cancer: experience from KIGS (Pfizer International Growth Database). J Pediatr 2010, 157(2):265-270.
  • [92]Bell J, Parker KL, Swinford RD, Hoffman AR, Maneatis T, Lippe B: Long-term safety of recombinant human growth hormone in children. J Clin Endocrinol Metab 2010, 95(1):167-177.
  • [93]Luger A, Feldt-Rasmussen U, Abs R, Gaillard RC, Buchfelder M, Trainer P, Brue T: Lessons Learned from 15 Years of KIMS and 5 Years of ACROSTUDY. Hormone Res Paediatrics 2011, 76(suppl 1):33-38.
  • [94]Loftus J, Heatley R, Walsh C, Dimitri P: Systematic review of the clinical effectiveness of genotraopin (somatropin) in children with short stature. J Pediatr Endocrinol Metab 2010, 23(6):535-551.
  • [95]Ergun-Longmire B, Mertens AC, Mitby P, Qin J, Heller G, Shi W, Yasui Y, Robison LL, Sklar CA: Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab 2006, 91(9):3494-3498.
  文献评价指标  
  下载次数:23次 浏览次数:18次