期刊论文详细信息
Clinical Epigenetics
Epigenetic activities of flavonoids in the prevention and treatment of cancer
Sascha Venturelli1  Jan Frank3  Ulrich M. Lauer1  Christian Leischner1  Markus Burkard1  Christian Busch2 
[1] Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, 72076, Germany;Division of Dermatologic Oncology, Department of Dermatology and Allergology, Medical University Hospital, Tuebingen, Germany;Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
关键词: Cancer;    Nutrition;    Phytochemicals;    Flavonoids;    DNMT;    HDAC;    Epigenetics;   
Others  :  1220623
DOI  :  10.1186/s13148-015-0095-z
 received in 2015-03-06, accepted in 2015-06-17,  发布年份 2015
PDF
【 摘 要 】

Aberrant epigenetic modifications are described in an increasing number of pathological conditions, including neurodegenerative diseases, cardiovascular diseases, diabetes mellitus type 2, obesity and cancer. The general reversibility of epigenetic changes makes them an attractive and promising target e.g. in the treatment of cancer. Thus, a growing number of epigenetically active compounds are currently tested in clinical trials for their therapeutic potential. Interestingly, many phytochemicals present in plant foods, particularly flavonoids, are suggested to be able to alter epigenetic cellular mechanisms. Flavonoids are natural phenol compounds that form a large group of secondary plant metabolites with interesting biological activities. They can be categorized into six major subclasses, which display diverse properties affecting the two best characterized epigenetic mechanisms: modulation of the DNA methylation status and histone acetylation. High dietary flavonoid intake has strongly been suggested to reduce the risk of numerous cancer entities in a large body of epidemiological studies. Established health-promoting effects of diets rich in fruit and vegetables are faced by efforts to use purified flavonoids as supplements or pharmaceuticals, whereupon data on the latter applications remain controversial. The purpose of this review is to give an overview of current research on flavonoids to further elucidate their potential in cancer prevention and therapy, thereby focusing on their distinct epigenetic activities.

【 授权许可】

   
2015 Busch et al.

【 预 览 】
附件列表
Files Size Format View
20150723032715265.pdf 1272KB PDF download
Fig. 4. 93KB Image download
Fig. 3. 70KB Image download
Fig. 2. 38KB Image download
Fig. 1. 42KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM: The global burden of cancer: priorities for prevention. Carcinogenesis 2010, 31(1):100-10.
  • [2]Ong TP, Moreno FS, Ross SA: Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 2011, 4(5):275-92.
  • [3]Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell 2010, 140(6):883-99.
  • [4]Ellis L, Atadja PW, Johnstone RW: Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009, 8(6):1409-20.
  • [5]Gilbert ER, Liu D: Flavonoids influence epigenetic-modifying enzyme activity: structure - function relationships and the therapeutic potential for cancer. Curr Med Chem 2010, 17(17):1756-68.
  • [6]Davis CD, Uthus EO: DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 2004, 229(10):988-95.
  • [7]Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100(1):57-70.
  • [8]Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R: DNA hypomethylation leads to elevated mutation rates. Nature 1998, 395(6697):89-93.
  • [9]Glozak MA, Seto E: Histone deacetylases and cancer. Oncogene 2007, 26(37):5420-32.
  • [10]Lyko F, Brown R: DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 2005, 97(20):1498-506.
  • [11]Link A, Balaguer F, Goel A: Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 2010, 80(12):1771-92.
  • [12]Vanden BW: Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res 2012, 65(6):565-76.
  • [13]Goldberg AD, Allis CD, Bernstein E: Epigenetics: a landscape takes shape. Cell 2007, 128(4):635-8.
  • [14]Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007, 8(4):286-98.
  • [15]Kanno R, Janakiraman H, Kanno M: Epigenetic regulator polycomb group protein complexes control cell fate and cancer. Cancer Sci 2008, 99(6):1077-84.
  • [16]Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet. 2007;16 Spec No 1:R28-49. doi:10.1093/hmg/ddm021.
  • [17]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-5.
  • [18]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-97.
  • [19]Esteller M: Epigenetics in cancer. N Engl J Med 2008, 358(11):1148-59.
  • [20]Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM: Predicting aberrant CpG island methylation. Proc Natl Acad Sci U S A 2003, 100(21):12253-8.
  • [21]Simmons RA: Developmental origins of beta-cell failure in type 2 diabetes: the role of epigenetic mechanisms. Pediatr Res 2007, 61(5 Pt 2):64R-7.
  • [22]Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16(1):6-21.
  • [23]Jiang YH, Bressler J, Beaudet AL: Epigenetics and human disease. Annu Rev Genomics Hum Genet 2004, 5:479-510.
  • [24]Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, et al.: De novo CpG island methylation in human cancer cells. Cancer Res 2006, 66(2):682-92.
  • [25]Plagemann A: A matter of insulin: developmental programming of body weight regulation. J Matern Fetal Neonatal Med 2008, 21(3):143-8.
  • [26]Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG, et al.: Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 2011, 3(75):75ra25.
  • [27]Park YJ, Claus R, Weichenhan D, Plass C: Genome-wide epigenetic modifications in cancer. Prog Drug Res 2011, 67:25-49.
  • [28]Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, et al.: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010, 328(5979):753-6.
  • [29]Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, et al.: Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 2009, 12(12):1559-66.
  • [30]Lee RS, Tamashiro KL, Yang X, Purcell RH, Huo Y, Rongione M, et al.: A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacology (Berl) 2011, 218(1):303-12.
  • [31]Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389(6648):251-60.
  • [32]McBryant SJ, Lu X, Hansen JC: Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 2010, 20(5):519-28.
  • [33]Keppler BR, Archer TK: Chromatin-modifying enzymes as therapeutic targets—part 1. Expert Opin Ther Targets 2008, 12(10):1301-12.
  • [34]Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293(5532):1074-80.
  • [35]Wang GG, Allis CD, Chi P: Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med 2007, 13(9):363-72.
  • [36]Delcuve GP, Khan DH, Davie JR: Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clinical Epigenetics 2012, 4(1):5.
  • [37]Liew CC, Chan PK: Identification of nonhistone chromatin proteins in chromatin subunits. Proc Natl Acad Sci U S A 1976, 73(10):3458-62.
  • [38]Falkenberg KJ, Johnstone RW: Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014, 13(9):673-91.
  • [39]Guil S, Esteller M: DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 2009, 41(1):87-95.
  • [40]Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al.: DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015, 11(5):604-17.
  • [41]Dokmanovic M, Clarke C, Marks PA: Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2007, 5(10):981-9.
  • [42]Bolden JE, Peart MJ, Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006, 5(9):769-84.
  • [43]Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK: Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001, 1(3):194-202.
  • [44]Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, Jukema JW: Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J 2009, 30(3):266-77.
  • [45]Brandl A, Heinzel T, Kramer OH: Histone deacetylases: salesmen and customers in the post-translational modification market. Biol Cell 2009, 101(4):193-205.
  • [46]Kim HJ, Kim SH, Yun JM: Fisetin inhibits hyperglycemia-induced proinflammatory cytokine production by epigenetic mechanisms. Evid Based Complement Alternat Med 2012, 2012:639469.
  • [47]Wang J, Pae M, Meydani SN, Wu D: Green tea epigallocatechin-3-gallate modulates differentiation of naive CD4(+) T cells into specific lineage effector cells. J Mol Med (Berl) 2013, 91(4):485-95.
  • [48]Middleton E Jr, Kandaswami C, Theoharides TC: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000, 52(4):673-751.
  • [49]West AC, Johnstone RW: New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014, 124(1):30-9.
  • [50]Rajendran P, Ho E, Williams DE, Dashwood RH: Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clinical Epigenetics 2011, 3(1):4.
  • [51]Rajendran P, Williams DE, Ho E, Dashwood RH: Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 2011, 46(3):181-99.
  • [52]Sinnberg T, Noor S, Venturelli S, Berger A, Schuler P, Garbe C, et al.: The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J Cell Mol Med 2014, 18(3):530-41.
  • [53]Jones PA, Baylin SB: The epigenomics of cancer. Cell 2007, 128(4):683-92.
  • [54]Venturelli S, Berger A, Weiland T, Essmann F, Waibel M, Nuebling T, et al.: Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2'-deoxycytidine in solid tumor cells. Mol Cancer Ther 2013, 12(10):2226-36.
  • [55]Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al.: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009, 10(3):223-32.
  • [56]Li LH, Olin EJ, Buskirk HH, Reineke LM: Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res 1970, 30(11):2760-9.
  • [57]Stresemann C, Lyko F: Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer Journal international du cancer 2008, 123(1):8-13.
  • [58]Warner JR, Knopf PM, Rich A: A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A 1963, 49:122-9.
  • [59]Cihak A: Biological effects of 5-azacytidine in eukaryotes. Oncology 1974, 30(5):405-22.
  • [60]Quintas-Cardama A, Santos FP, Garcia-Manero G: Therapy with azanucleosides for myelodysplastic syndromes. Nat Rev Clin Oncol 2010, 7(8):433-44.
  • [61]Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, et al.: Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006, 106(8):1794-803.
  • [62]Ramos MP, Wijetunga NA, McLellan AS, Suzuki M, Greally JM: DNA demethylation by 5-aza-2'-deoxycytidine is imprinted, targeted to euchromatin, and has limited transcriptional consequences. Epigenetics Chromatin 2015, 8:11.
  • [63]Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, et al.: Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2'-deoxycytidine. Mol Cancer Ther 2005, 4(10):1515-20.
  • [64]Karahoca M, Momparler RL: Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clinical Epigenetics 2013, 5(1):3.
  • [65]Stresemann C, Bokelmann I, Mahlknecht U, Lyko F: Azacytidine causes complex DNA methylation responses in myeloid leukemia. Mol Cancer Ther 2008, 7(9):2998-3005.
  • [66]Venturelli S, Sinnberg TW, Berger A, Noor S, Levesque MP, Bocker A, et al.: Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front Oncol 2014, 4:227.
  • [67]de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003, 370(Pt 3):737-49.
  • [68]Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009, 10(1):32-42.
  • [69]Garnock-Jones KP: Panobinostat: first global approval. Drugs 2015, 75(6):695-704.
  • [70]Poole RM: Belinostat: first global approval. Drugs 2014, 74(13):1543-54.
  • [71]Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17(3):330-9.
  • [72]Hollman PC, Katan MB: Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 1999, 37(9–10):937-42.
  • [73]Kuhnau J: The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 1976, 24:117-91.
  • [74]War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al.: Mechanisms of plant defense against insect herbivores. Plant Signal Behav 2012, 7(10):1306-20.
  • [75]Hodek P, Trefil P, Stiborova M: Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 2002, 139(1):1-21.
  • [76]Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, et al.: Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal 2012, 17(2):327-39.
  • [77]Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I: Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 2010, 501(1):79-90.
  • [78]Acamovic T, Brooker JD: Biochemistry of plant secondary metabolites and their effects in animals. Proc Nutr Soc 2005, 64(3):403-12.
  • [79]Dinkova-Kostova AT: Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms. Planta Med 2008, 74(13):1548-59.
  • [80]Dashwood RH: Frontiers in polyphenols and cancer prevention. J Nutr 2007, 137(1 Suppl):267S-9.
  • [81]Brat P, George S, Bellamy A, Du Chaffaut L, Scalbert A, Mennen L, et al.: Daily polyphenol intake in France from fruit and vegetables. J Nutr 2006, 136(9):2368-73.
  • [82]Perez-Jimenez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S, et al.: Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 2011, 93(6):1220-8.
  • [83]Johannot L, Somerset SM: Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr 2006, 9(8):1045-54.
  • [84]Chun OK, Chung SJ, Song WO: Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 2007, 137(5):1244-52.
  • [85]Graham HN: Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992, 21(3):334-50.
  • [86]Yang J, Mao QX, Xu HX, Ma X, Zeng CY: Tea consumption and risk of type 2 diabetes mellitus: a systematic review and meta-analysis update. BMJ Open 2014., 4(7) Article ID e005632
  • [87]Hardy TM, Tollefsbol TO: Epigenetic diet: impact on the epigenome and cancer. Epigenomics 2011, 3(4):503-18.
  • [88]Fujihara T, Nakagawa-Izumi A, Ozawa T, Numata O: High-molecular-weight polyphenols from oolong tea and black tea: purification, some properties, and role in increasing mitochondrial membrane potential. Biosci Biotechnol Biochem 2007, 71(3):711-9.
  • [89]Shen FM, Chen HW: Element composition of tea leaves and tea infusions and its impact on health. Bull Environ Contam Toxicol 2008, 80(3):300-4.
  • [90]Higdon JV, Frei B: Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 2003, 43(1):89-143.
  • [91]Babu PV, Liu D: Green tea catechins and cardiovascular health: an update. Curr Med Chem 2008, 15(18):1840-50.
  • [92]Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H: Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 1997, 89(24):1881-6.
  • [93]Li Y, Tollefsbol TO: Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 2010, 17(20):2141-51.
  • [94]Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F: Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 2006, 66(5):2794-800.
  • [95]Lee WJ, Shim JY, Zhu BT: Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 2005, 68(4):1018-30.
  • [96]Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, et al.: Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003, 63(22):7563-70.
  • [97]Nandakumar V, Vaid M, Katiyar SK: (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 2011, 32(4):537-44.
  • [98]Cuevas A, Saavedra N, Salazar LA, Abdalla DS: Modulation of immune function by polyphenols: possible contribution of epigenetic factors. Nutrients 2013, 5(7):2314-32.
  • [99]Zhu BT, Patel UK, Cai MX, Lee AJ, Conney AH: Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica 2001, 31(12):879-90.
  • [100]Lu H, Meng X, Yang CS: Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos 2003, 31(5):572-9.
  • [101]Saavedra OM, Isakovic L, Llewellyn DB, Zhan L, Bernstein N, Claridge S, et al.: SAR around (l)-S-adenosyl-l-homocysteine, an inhibitor of human DNA methyltransferase (DNMT) enzymes. Bioorg Med Chem Lett 2009, 19(10):2747-51.
  • [102]Moseley VR, Morris J, Knackstedt RW, Wargovich MJ: Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells. Anticancer Res 2013, 33(12):5325-33.
  • [103]Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, et al.: Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 2009, 69(2):583-92.
  • [104]Augustin K, Frank J, Augustin S, Langguth P, Ohrvik V, Witthoft CM, et al.: Green tea extracts lower serum folates in rats at very high dietary concentrations only and do not affect plasma folates in a human pilot study. J Physiol Pharmacol 2009, 60(3):103-8.
  • [105]Henning SM, Wang P, Said J, Magyar C, Castor B, Doan N, et al.: Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis. J Nutr Biochem 2012, 23(11):1537-42.
  • [106]Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, Wargovich MJ: Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 2009, 48(10):920-33.
  • [107]Mittal A, Piyathilake C, Hara Y, Katiyar SK: Exceptionally high protection of photocarcinogenesis by topical application of (--)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 2003, 5(6):555-65.
  • [108]Morey Kinney SR, Zhang W, Pascual M, Greally JM, Gillard BM, Karasik E, et al.: Lack of evidence for green tea polyphenols as DNA methylation inhibitors in murine prostate. Cancer Prevention Research 2009, 2(12):1065-75.
  • [109]Adhami VM, Siddiqui IA, Sarfaraz S, Khwaja SI, Hafeez BB, Ahmad N, et al.: Effective prostate cancer chemopreventive intervention with green tea polyphenols in the TRAMP model depends on the stage of the disease. Clin Cancer Res 2009, 15(6):1947-53.
  • [110]Aherne SA, O'Brien NM: Dietary flavonols: chemistry, food content, and metabolism. Nutrition 2002, 18(1):75-81.
  • [111]Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, et al.: Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr 2008, 138(9):1615-21.
  • [112]Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, et al.: Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 2009, 102(7):1065-74.
  • [113]Egert S, Boesch-Saadatmandi C, Wolffram S, Rimbach G, Muller MJ: Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr 2010, 140(2):278-84.
  • [114]Moon JH, Nakata R, Oshima S, Inakuma T, Terao J: Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. Am J Physiol Regul Integr Comp Physiol 2000, 279(2):R461-7.
  • [115]Sahu BD, Kalvala AK, Koneru M, Mahesh Kumar J, Kuncha M, Rachamalla SS, et al.: Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-kappaB activation and antioxidant defence. PLoS One 2014., 9(9) Article ID e105070
  • [116]Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002, 22:19-34.
  • [117]Basli A, Soulet S, Chaher N, Merillon JM, Chibane M, Monti JP, et al.: Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012, 2012:805762.
  • [118]Berger A, Venturelli S, Kallnischkies M, Bocker A, Busch C, Weiland T, et al.: Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 2013, 24(6):977-85.
  • [119]Lee WJ, Chen YR, Tseng TH: Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells. Oncol Rep 2011, 25(2):583-91.
  • [120]Priyadarsini RV, Vinothini G, Murugan RS, Manikandan P, Nagini S: The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutr Cancer 2011, 63(2):218-26.
  • [121]Lopez-Lazaro M: Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 2009, 9(1):31-59.
  • [122]Fang M, Chen D, Yang CS: Dietary polyphenols may affect DNA methylation. J Nutr 2007, 137(1 Suppl):223S-8.
  • [123]Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S: Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog 2012, 51(12):952-62.
  • [124]Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventos RM, Berenguer T, Jakszyn P, Martinez C, et al.: Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr 2008, 100(1):188-96.
  • [125]Felgines C, Texier O, Morand C, Manach C, Scalbert A, Regerat F, et al.: Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 2000, 279(6):G1148-54.
  • [126]Tham DM, Gardner CD, Haskell WL: Clinical review 97: potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 1998, 83(7):2223-35.
  • [127]Rietjens IM, Sotoca AM, Vervoort J, Louisse J: Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol Nutr Food Res 2013, 57(1):100-13.
  • [128]Rimbach G, Boesch-Saadatmandi C, Frank J, Fuchs D, Wenzel U, Daniel H, et al.: Dietary isoflavones in the prevention of cardiovascular disease—a molecular perspective. Food Chem Toxicol 2008, 46(4):1308-19.
  • [129]Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS: Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 2005, 11(19 Pt 1):7033-41.
  • [130]Zhang Y, Chen H: Genistein, an epigenome modifier during cancer prevention. Epigenetics 2011, 6(7):888-91.
  • [131]Meeran SM, Patel SN, Chan TH, Tollefsbol TO: A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prevention Research 2011, 4(8):1243-54.
  • [132]Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO: Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 2008, 103(2):509-19.
  • [133]Li Y, Liu L, Andrews LG, Tollefsbol TO: Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. International journal of cancer Journal international du cancer 2009, 125(2):286-96.
  • [134]Vanhees K, Coort S, Ruijters EJ, Godschalk RW, van Schooten FJ, Barjesteh van Waalwijk van Doorn-Khosrovani S: Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB 2011, 25(2):797-807.
  • [135]Zhang Y, Li Q, Chen H: DNA methylation and histone modifications of Wnt genes by genistein during colon cancer development. Carcinogenesis 2013, 34(8):1756-63.
  • [136]Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al.: Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. International journal of cancer Journal international du cancer 2008, 123(3):552-60.
  • [137]Dagdemir A, Durif J, Ngollo M, Bignon YJ, Bernard-Gallon D: Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics 2013, 5(1):51-63.
  • [138]Fang MZ, Jin Z, Wang Y, Liao J, Yang GY, Wang LD, et al.: Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. Int J Oncol 2005, 26(3):615-22.
  • [139]Parker LP, Taylor DD, Kesterson J, Metzinger DS, Gercel-Taylor C: Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol 2009, 30(6):616-21.
  • [140]Allred CD, Ju YH, Allred KF, Chang J, Helferich WG: Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis 2001, 22(10):1667-73.
  • [141]Martinez-Montemayor MM, Otero-Franqui E, Martinez J, De La Mota-Peynado A, Cubano LA, Dharmawardhane S: Individual and combined soy isoflavones exert differential effects on metastatic cancer progression. Clin Exp Metastasis 2010, 27(7):465-80.
  • [142]Al-Anati L, Essid E, Reinehr R, Petzinger E: Silibinin protects OTA-mediated TNF-alpha release from perfused rat livers and isolated rat Kupffer cells. Mol Nutr Food Res 2009, 53(4):460-6.
  • [143]Jayaraj R, Deb U, Bhaskar AS, Prasad GB, Rao PV: Hepatoprotective efficacy of certain flavonoids against microcystin induced toxicity in mice. Environ Toxicol 2007, 22(5):472-9.
  • [144]Mengs U, Pohl RT, Mitchell T: Legalon(R) SIL: the antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Curr Pharm Biotechnol 2012, 13(10):1964-70.
  • [145]Davis-Searles PR, Nakanishi Y, Kim NC, Graf TN, Oberlies NH, Wani MC, et al.: Milk thistle and prostate cancer: differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res 2005, 65(10):4448-57.
  • [146]Kauntz H, Bousserouel S, Gosse F, Raul F: Epigenetic effects of the natural flavonolignan silibinin on colon adenocarcinoma cells and their derived metastatic cells. Oncol Lett 2013, 5(4):1273-7.
  • [147]Lah JJ, Cui W, Hu KQ: Effects and mechanisms of silibinin on human hepatoma cell lines. World J Gastroenterol 2007, 13(40):5299-305.
  • [148]Cui W, Gu F, Hu KQ: Effects and mechanisms of silibinin on human hepatocellular carcinoma xenografts in nude mice. World J Gastroenterol 2009, 15(16):1943-50.
  • [149]Mateen S, Raina K, Jain AK, Agarwal C, Chan D, Agarwal R: Epigenetic modifications and p21-cyclin B1 nexus in anticancer effect of histone deacetylase inhibitors in combination with silibinin on non-small cell lung cancer cells. Epigenetics 2012, 7(10):1161-72.
  • [150]Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer Journal international du cancer 2015, 136(5):E359-86.
  • [151]Kandaswami C, Perkins E, Drzewiecki G, Soloniuk DS, Middleton E Jr: Differential inhibition of proliferation of human squamous cell carcinoma, gliosarcoma and embryonic fibroblast-like lung cells in culture by plant flavonoids. Anticancer Drugs 1992, 3(5):525-30.
  • [152]Middleton E Jr, Kandaswami C: Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 1992, 43(6):1167-79.
  • [153]Bishop KS, Ferguson LR: The interaction between epigenetics, nutrition and the development of cancer. Nutrients 2015, 7(2):922-47.
  • [154]Ouedraogo M, Charles C, Ouedraogo M, Guissou IP, Stevigny C, Duez P: An overview of cancer chemopreventive potential and safety of proanthocyanidins. Nutr Cancer 2011, 63(8):1163-73.
  • [155]Barnard RJ: Prevention of cancer through lifestyle changes. Evid Based Complement Alternat Med 2004, 1(3):233-9.
  • [156]Chen C, Kong AN: Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 2005, 26(6):318-26.
  • [157]Nantz MP, Rowe CA, Muller C, Creasy R, Colee J, Khoo C, et al.: Consumption of cranberry polyphenols enhances human gammadelta-T cell proliferation and reduces the number of symptoms associated with colds and influenza: a randomized, placebo-controlled intervention study. Nutr J 2013, 12:161.
  • [158]Chiva-Blanch G, Urpi-Sarda M, Llorach R, Rotches-Ribalta M, Guillen M, Casas R, et al.: Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am J Clin Nutr 2012, 95(2):326-34.
  • [159]Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, et al.: Intra-individual change over time in DNA methylation with familial clustering. JAMA 2008, 299(24):2877-83.
  • [160]Poulsen P, Esteller M, Vaag A, Fraga MF: The epigenetic basis of twin discordance in age-related diseases. Pediatr Res 2007, 61(5 Pt 2):38R-42.
  • [161]Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, et al.: The antitumor activities of flavonoids. In Vivo 2005, 19(5):895-909.
  • [162]Harborne JB, Williams CA: Advances in flavonoid research since 1992. Phytochemistry 2000, 55(6):481-504.
  • [163]Sarkar FH, Li Y, Wang Z, Kong D: Cellular signaling perturbation by natural products. Cell Signal 2009, 21(11):1541-7.
  • [164]Yao H, Xu W, Shi X, Zhang Z: Dietary flavonoids as cancer prevention agents. J Environ Sci Health C 2011, 29(1):1-31.
  • [165]Gerhauser C: Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem 2013, 329:73-132.
  • [166]Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB: Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 2008, 100(11):773-83.
  • [167]Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C: Impact of antioxidant supplementation on chemotherapeutic efficacy: a systematic review of the evidence from randomized controlled trials. Cancer Treat Rev 2007, 33(5):407-18.
  • [168]Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C: Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. International journal of cancer Journal international du cancer 2008, 123(6):1227-39.
  • [169]Bairati I, Meyer F, Gelinas M, Fortin A, Nabid A, Brochet F, et al.: Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J Clin Oncol 2005, 23(24):5805-13.
  • [170]Bairati I, Meyer F, Jobin E, Gelinas M, Fortin A, Nabid A, et al.: Antioxidant vitamins supplementation and mortality: a randomized trial in head and neck cancer patients. International journal of cancer Journal international du cancer 2006, 119(9):2221-4.
  • [171]Meyer F, Bairati I, Fortin A, Gelinas M, Nabid A, Brochet F, et al.: Interaction between antioxidant vitamin supplementation and cigarette smoking during radiation therapy in relation to long-term effects on recurrence and mortality: a randomized trial among head and neck cancer patients. International journal of cancer Journal international du cancer 2008, 122(7):1679-83.
  • [172]Ligibel JA, Alfano CM, Courneya KS, Demark-Wahnefried W, Burger RA, Chlebowski RT, et al.: American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol 2014, 32(31):3568-74.
  • [173]Arem H, Bobe G, Sampson J, Subar AF, Park Y, Risch H, et al.: Flavonoid intake and risk of pancreatic cancer in the National Institutes of Health-AARP Diet and Health Study Cohort. Br J Cancer 2013, 108(5):1168-72.
  • [174]Zamora-Ros R, Sacerdote C, Ricceri F, Weiderpass E, Roswall N, Buckland G, et al.: Flavonoid and lignan intake in relation to bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Cancer 2014, 111(9):1870-80.
  • [175]Shike M, Doane AS, Russo L, Cabal R, Reis-Filo J, Gerald W et al. The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. Journal of the National Cancer Institute. 2014;106(9). doi:10.1093/jnci/dju189.
  • [176]Morimoto Y, Maskarinec G, Park SY, Ettienne R, Matsuno RK, Long C, et al.: Dietary isoflavone intake is not statistically significantly associated with breast cancer risk in the multiethnic cohort. Br J Nutr 2014, 112(6):976-83.
  • [177]Dong JY, Qin LQ: Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 2011, 125(2):315-23.
  • [178]Romagnolo DF, Selmin OI: Flavonoids and cancer prevention: a review of the evidence. Journal of Nutrition in Gerontology and Geriatrics 2012, 31(3):206-38.
  • [179]Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E, et al.: Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 1997, 146(3):223-30.
  • [180]Rossi M, Bosetti C, Negri E, Lagiou P, La Vecchia C: Flavonoids, proanthocyanidins, and cancer risk: a network of case-control studies from Italy. Nutr Cancer 2010, 62(7):871-7.
  • [181]Garavello W, Rossi M, McLaughlin JK, Bosetti C, Negri E, Lagiou P, et al.: Flavonoids and laryngeal cancer risk in Italy. Ann Oncol 2007, 18(6):1104-9.
  • [182]Rossi M, Garavello W, Talamini R, La Vecchia C, Franceschi S, Lagiou P, et al.: Flavonoids and risk of squamous cell esophageal cancer. International journal of cancer Journal international du cancer 2007, 120(7):1560-4.
  • [183]Ekstrom AM, Serafini M, Nyren O, Wolk A, Bosetti C, Bellocco R: Dietary quercetin intake and risk of gastric cancer: results from a population-based study in Sweden. Ann Oncol 2011, 22(2):438-43.
  • [184]Sasazuki S, Inoue M, Miura T, Iwasaki M, Tsugane S: Japan Public Health Center-based Prospective Study G: Plasma tea polyphenols and gastric cancer risk: a case-control study nested in a large population-based prospective study in Japan. Cancer Epidemiol Biomarkers Prev 2008, 17(2):343-51.
  • [185]Hara A, Sasazuki S, Inoue M, Iwasaki M, Shimazu T, Sawada N, et al.: Isoflavone intake and risk of gastric cancer: a population-based prospective cohort study in Japan. Am J Clin Nutr 2012, 95(1):147-54.
  • [186]Nothlings U, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN: Flavonols and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol 2007, 166(8):924-31.
  • [187]Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE: A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. International journal of cancer Journal international du cancer 2007, 121(10):2225-32.
  • [188]Cassidy A, Huang T, Rice MS, Rimm EB, Tworoger SS: Intake of dietary flavonoids and risk of epithelial ovarian cancer. Am J Clin Nutr 2014, 100(5):1344-51.
  • [189]Miyanaga N, Akaza H, Hinotsu S, Fujioka T, Naito S, Namiki M, et al.: Prostate cancer chemoprevention study: an investigative randomized control study using purified isoflavones in men with rising prostate-specific antigen. Cancer Sci 2012, 103(1):125-30.
  • [190]Pendleton JM, Tan WW, Anai S, Chang M, Hou W, Shiverick KT, et al.: Phase II trial of isoflavone in prostate-specific antigen recurrent prostate cancer after previous local therapy. BMC Cancer 2008, 8:132.
  • [191]Ide H, Tokiwa S, Sakamaki K, Nishio K, Isotani S, Muto S, et al.: Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 2010, 70(10):1127-33.
  • [192]Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S: Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 1995, 125(9):2307-15.
  • [193]Justesen U, Knuthsen P, Leth T: Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J Chromatogr A 1998, 799(1–2):101-10.
  • [194]Arabbi PR, Genovese MI, Lajolo FM: Flavonoids in vegetable foods commonly consumed in Brazil and estimated ingestion by the Brazilian population. J Agric Food Chem 2004, 52(5):1124-31.
  • [195]Gennaro L, Leonardi C, Esposito F, Salucci M, Maiani G, Quaglia G, et al.: Flavonoid and carbohydrate contents in Tropea red onions: effects of homelike peeling and storage. J Agric Food Chem 2002, 50(7):1904-10.
  • [196]Mattila P, Astola J, Kumpulainen J: Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem 2000, 48(12):5834-41.
  • [197]Caldwell CR, Britz SJ, Mirecki RM: Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J Agric Food Chem 2005, 53(4):1125-9.
  • [198]Charron CS, Allen FL, Johnson RD, Pantalone VR, Sams CE: Correlations of oil and protein with isoflavone concentration in soybean [Glycine max (L.) Merr.]. J Agric Food Chem 2005, 53(18):7128-35.
  • [199]Chiou RY, Cheng SL: Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. J Agric Food Chem 2001, 49(8):3656-60.
  • [200]Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ: Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 2003, 51(1):340-4.
  • [201]McCann MC, Liu K, Trujillo WA, Dobert RC: Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing. J Agric Food Chem 2005, 53(13):5331-5.
  • [202]Wu Q, Wang M, Sciarappa WJ, Simon JE: LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans. J Agric Food Chem 2004, 52(10):2763-9.
  • [203]Khan N, Syed DN, Ahmad N, Mukhtar H: Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 2013, 19(2):151-62.
  • [204]Hakkinen SH, Karenlampi SO, Mykkanen HM, Torronen AR: Influence of domestic processing and storage on flavonol contents in berries. J Agric Food Chem 2000, 48(7):2960-5.
  • [205]Kosar M, Kafkas E, Paydas S, Baser KH: Phenolic composition of strawberry genotypes at different maturation stages. J Agric Food Chem 2004, 52(6):1586-9.
  • [206]Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K: Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem 2003, 51(3):571-81.
  • [207]de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC: Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J Agric Food Chem 2000, 48(11):5331-7.
  • [208]Khokhar S, Venema D, Hollman PC, Dekker M, Jongen W: A RP-HPLC method for the determination of tea catechins. Cancer Lett 1997, 114(1–2):171-2.
  • [209]Rechner AR, Wagner E, Van Buren L, Van De Put F, Wiseman S, Rice-Evans CA: Black tea represents a major source of dietary phenolics among regular tea drinkers. Free Radic Res 2002, 36(10):1127-35.
  文献评价指标  
  下载次数:32次 浏览次数:15次