Cell & Bioscience | |
Multiscale mechanobiology: mechanics at the molecular, cellular, and tissue levels | |
Ching-Hwa Kiang2  Eric W Frey3  Sithara S Wijeratne3  Nolan C Harris3  Chin-Lin Guo1  | |
[1] Department of Bioengineering and Department of Applied Physics, California Institute of Technology, MC 138–78, Pasadena, CA 91125, USA;Department of Bioengineering, Rice University, Houston, TX, USA;Department of Physics and Astronomy, Rice University, Houston, TX, USA | |
关键词: Micro-patterning; Atomic force microscopy; Single-molecule manipulation; Tissues; Cells; DNA; Proteins; Biomolecules; Mechanical force; Mechanics; | |
Others : 791645 DOI : 10.1186/2045-3701-3-25 |
|
received in 2013-01-07, accepted in 2013-04-24, 发布年份 2013 | |
【 摘 要 】
Mechanical force is present in all aspects of living systems. It affects the conformation of molecules, the shape of cells, and the morphology of tissues. All of these are crucial in architecture-dependent biological functions. Nanoscience of advanced materials has provided knowledge and techniques that can be used to understand how mechanical force is involved in biological systems, as well as to open new avenues to tailor-made bio-mimetic materials with desirable properties.
In this article, we describe models and show examples of how force is involved in molecular functioning, cell shape patterning, and tissue morphology.
【 授权许可】
2013 Guo et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705015904688.pdf | 3103KB | download | |
Figure 12. | 97KB | Image | download |
Figure 11. | 83KB | Image | download |
Figure 10. | 80KB | Image | download |
Figure 9. | 50KB | Image | download |
Figure 8. | 109KB | Image | download |
Figure 7. | 57KB | Image | download |
Figure 6. | 72KB | Image | download |
Figure 5. | 128KB | Image | download |
Figure 4. | 98KB | Image | download |
Figure 3. | 54KB | Image | download |
Figure 2. | 84KB | Image | download |
Figure 1. | 46KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
【 参考文献 】
- [1]Lecuit T, Lenne PF: Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 2007, 8:633-644.
- [2]Settleman J, Baum B: Cell shape and tissue morphogenesis. Semin Cell Dev Biol 2008, 19:213-214.
- [3]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE: Geometric control of cell life and death. Science 1997, 276:1425-1428.
- [4]Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK: Self-organization of muscle cell structure and function. PLoS Comput Biol 2011, 7:e1001088.
- [5]Gao L, McBeath R, Chen CS: Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 2010, 28:564-572.
- [6]Miron-Mendoza M, Seemann J, Grinnell F: Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol Biol Cell 2008, 19:2051-2058.
- [7]Brock A, Chang E, Ho CC, LeDuc P, Jiang X, Whitesides GM, Ingber DE: Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 2003, 19:1611-1617.
- [8]Thiery JP, Acloque H, Huang RYJ, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139:871-890.
- [9]Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 2005, 60:24-34.
- [10]Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM: Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8:241-254.
- [11]Chung WJ, Oh JW, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee SW: Biomimetic self-templating supramolecular structures. Nature 2011, 478:364-368.
- [12]Dobrynin AV, Carrillo JMY, Rubinstein M: Chains are more flexible under tension. Macromolecules 2010, 43:9181-9190.
- [13]Smith SB, Cui Y, Bustamante C: Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 1996, 271:795-799.
- [14]Smith SB, Finzi L, Bustamante C: Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 1992, 258:1122-1126.
- [15]Labeit S, Kolmerer B: Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995, 270:293-296.
- [16]Improta S, Politou AS, Pastore A: Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 1996, 4:323-337.
- [17]Labeit S, Kolmerer B, Linke WA: The giant protein titin - Emerging roles in physiology and pathophysiology. Circ Res 1997, 80:290-294.
- [18]Kellermayer MSZ, Grama L: Stretching and visualizing titin molecules: combining structure, dynamics and mechanics. J Muscle Res Cell Motil 2002, 23:499-511.
- [19]Tskhovrebova L, Trinick J: Properties of titin immunoglobulin and fibronectin-3 domains. J Biol Chem 2004, 279:46351-46354.
- [20]Sarkar A, Caamano S, Fernandez JM: The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy. J Biol Chem 2005, 280:6261-6264.
- [21]Linke WA, Fernandez JM: Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. J Muscle Res Cell Motil 2002, 23:483-497.
- [22]Harris NC, Song Y, Kiang CH: Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski's equality. Phys Rev Lett 2007, 99:068101.
- [23]Harris NC, Kiang CH: Velocity convergence of free energy surfaces from single-molecule measurements using Jarzynski's equality. Phys Rev E 2009, 79:041912.
- [24]Botello E, Harris NC, Sargent J, Chen WH, Lin KJ, Kiang CH: Temperature and Chemical Denaturant Dependence of Forced Unfolding of Titin 127. J Phys Chem B 2009, 113:10845-10848.
- [25]Calderon CR, Harris NC, Kiang CH, Cox DD: Analyzing single-molecule manipulation experiments. J Mol Recognit 2009, 22:356-362.
- [26]Calderon CP, Harris NC, Kiang CH, Cox DD: Quantifying multiscale noise sources in single-molecule time series. J Phys Chem B 2009, 113:138-148.
- [27]Martin Y, Williams CC, Wickramasinghe HK: Atomic force microscope–force mapping and profiling on a sub 100-Å Scale. J Appl Phys 1987, 61:4723-4729.
- [28]Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE: Mechanical stability of single DNA molecules. Biophys J 2000, 78:1997-2007.
- [29]Rief M, Clausen-Schaumann H, Gaub HE: Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol 1999, 6:346-349.
- [30]Albrecht CH, Neuert G, Lugmaier RA, Gaub HE: Molecular force balance measurements reveal that double-stranded DNA unbinds under force in rate-dependent pathways. Biophys J 2008, 94:4766-4774.
- [31]Sun Y, Harris NC, Kiang CH: Melting transition of directly linked gold nanoparticle DNA assembly. Physica A 2005, 350:89-94.
- [32]Sun Y, Harris NC, Kiang CH: The reversible phase transition of DNA-linked colloidal gold assemblies. Physica A 2005, 354:1-9.
- [33]Harris NC, Kiang CH: Defects can increase the melting temperature of DNA - Nanoparticle assemblies. J Phys Chem B 2006, 110:16393-16396.
- [34]Sun Y, Harris NC, Kiang CH: Phase transition and optical properties of DNA-gold nanoparticle assemblies. Plasmonics 2007, 2:193-199.
- [35]Cocco S, Yan J, Léger JF, Chatenay D, Marko JF: Overstretching and force-driven strand separation of double-helix DNA. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 70:011910.
- [36]Ambjörnsson T, Banik SK, Krichevsky O, Metzler R: Breathing dynamics in heteropolymer DNA. Biophys J 2007, 92:2674-2684.
- [37]Whitelam S, Pronk S, Geissler PL: There and (slowly) back again: entropy-driven hysteresis in a model of DNA overstretching. Biophys J 2008, 94:2452-2469.
- [38]Ke C, Humeniuk M, S-Gracz H, Marszalek PE: Direct measurements of base stacking interactions in DNA by single-molecule atomic-force spectroscopy. Phys Rev Lett 2007, 99:018302.
- [39]McCauley MJ, Williams MC: Mechanisms of DNA binding determined in optical tweezers experiments. Biopolymers 2007, 85:154-168.
- [40]Calderon CP, Chen WH, Lin KJ, Harris NC, Kiang CH: Quantifying DNA melting transitions using single-molecule force spectroscopy. J Phys Condens Matter 2009, 21:034114.
- [41]Chen WS, Chen WH, Chen Z, Gooding AA, Lin KJ, Kiang CH: Direct Observation of multiple pathways of single-stranded DNA stretching. Phys Rev Lett 2010, 105:218104.
- [42]Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE: Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 2002, 16:1195-1204.
- [43]Wang N, Ostuni E, Whitesides GM, Ingber DE: Micropatterning tractional forces in living cells. Cell Motil Cytoskeleton 2002, 52:97-106.
- [44]Dotti CG, Sullivan CA, Banker GA: The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988, 8:1454-1468.
- [45]Chuang PT, McMahon AP: Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 2003, 13:86-91.
- [46]Affolter M, Zeller R, Caussinus E: Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol 2009, 10:831-842.
- [47]Horowitz A, Simons M: Branching morphogenesis. Circ Res 2008, 103:784-795.
- [48]Patel VN, Rebustini IT, Hoffman MP: Salivary gland branching morphogenesis. Differentiation 2006, 74:349-364.
- [49]Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK: Branching morphogenesis and kidney disease. Development 2004, 131:1449-1462.
- [50]Costantini F, Kopan R: Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 2010, 18:698-712.
- [51]Keller R, Davidson LA, Shook DR: How we are shaped: the biomechanics of gastrulation. Differentiation 2003, 71:171-205.
- [52]Turing A: The chemical basis of morphogenesis. Phil Trans R Soc London B 1952, 237:37-72.
- [53]Jung HS, Francis-West PH, Widelitz RB, Jiang TX, Ting-Berreth S, Tickle C, Wolpert L, Chuong CM: Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev Biol 1998, 196:11-23.
- [54]Sick S, Reinker S, Timmer J, Schlake T: WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 2006, 314:1447-1450.
- [55]Zegers MM, O'Brien LE, Yu W, Datta A, Mostov KE: Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol 2003, 13:169-176.
- [56]Comer FI, Parent CA: Phosphoinositides specify polarity during epithelial organ development. Cell 2007, 128:239-240.
- [57]Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, Yamazaki M, Watanabe H, Itoh R, Kuroda S, Horie Y, Förster I, Mak TW, Yonekawa H, Penninger JM, Kanaho Y, Suzuki A, Sasaki T: Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 2007, 9:36-44.
- [58]Horowitz A, Simons M: Branching morphogenesis. Circ Res 2009, 104:e21.
- [59]Bridgewater D, Rosenblum ND: Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol 2009, 24:1611-1619.
- [60]Jiang TX, Jung HS, Widelitz RB, Chuong CM: Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 1999, 126:4997-5009.
- [61]Lin CM, Jiang TX, Baker RE, Maini PK, Widelitz RB, Chuong CM: Spots and stripes: pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. Dev Biol 2009, 334:369-382.
- [62]Janmey PA, McCulloch CA: Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 2007, 9:1-34.
- [63]Bement WM, Forscher P, Mooseker MS: A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol 1993, 121:565-578.
- [64]Henson JH, Nazarian R, Schulberg KL, Trabosh VA, Kolnik SE, Burns AR, McPartland KJ: Wound closure in the lamellipodia of single cells: mediation by actin polymerization in the absence of an actomyosin purse string. Mol Biol Cell 2002, 13:1001-1014.
- [65]Mark S, Shlomovitz R, Gov NS, Poujade M, Grasland-Mongrain E, Silberzan P: Physical model of the dynamic instability in an expanding cell culture. Biophys J 2010, 98:361-370.
- [66]Ragsdale GK, Phelps J, Luby-Phelps K: Viscoelastic response of fibroblasts to tension transmitted through adherens junctions. Biophys J 1997, 73:2798-2808.
- [67]Vaezi A, Bauer C, Vasioukhin V, Fuchs E: Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev Cell 2002, 3:367-381.
- [68]Reinhart-King CA, Dembo M, Hammer DA: Cell-cell mechanical communication through compliant substrates. Biophys J 2008, 95:6044-6051.
- [69]Bailly M: Connecting cell adhesion to the actin polymerization machinery: vinculin as the missing link? Trends Cell Biol 2003, 13:163-165.