期刊论文详细信息
Journal of Biomedical Science
Activated protein C ameliorates Bacillus anthracis lethal toxin-induced lethal pathogenesis in rats
Hsin-Hou Chang4  Der-Shan Sun4  Hung-Chi Lin3  Hsin-Hsien Huang3  Chin-Cheng Lee1  Te-Sheng Lien4  Yung-Luen Shih2  Jyh-Hwa Kau3 
[1] Department of Pathology and Laboratory Medicine, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan, ROC;School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, ROC;Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC;Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan, ROC
关键词: Coagulopathy;    Activated protein C;    Lethal toxin;    Anthrax;   
Others  :  824427
DOI  :  10.1186/1423-0127-19-98
 received in 2012-05-14, accepted in 2012-10-18,  发布年份 2012
PDF
【 摘 要 】

Background

Lethal toxin (LT) is a major virulence factor of Bacillus anthracis. Sprague Dawley rats manifest pronounced lung edema and shock after LT treatments, resulting in high mortality. The heart failure that is induced by LT has been suggested to be a principal mechanism of lung edema and mortality in rodents. Since LT-induced death occurs more rapidly in rats than in mice, suggesting that other mechanisms in addition to the heart dysfunction may be contributed to the fast progression of LT-induced pathogenesis in rats. Coagulopathy may contribute to circulatory failure and lung injury. However, the effect of LT on coagulation-induced lung dysfunction is unclear.

Methods

To investigate the involvement of coagulopathy in LT-mediated pathogenesis, the mortality, lung histology and coagulant levels of LT-treated rats were examined. The effects of activated protein C (aPC) on LT-mediated pathogenesis were also evaluated.

Results

Fibrin depositions were detected in the lungs of LT-treated rats, indicating that coagulation was activated. Increased levels of plasma D-dimer and thrombomodulin, and the ameliorative effect of aPC further suggested that the activation of coagulation-fibrinolysis pathways plays a role in LT-mediated pathogenesis in rats. Reduced mortality was associated with decreased plasma levels of D-dimer and thrombomodulin following aPC treatments in rats with LT-mediated pathogenesis.

Conclusions

These findings suggest that the activation of coagulation in lung tissue contributes to mortality in LT-mediated pathogenesis in rats. In addition, anticoagulant aPC may help to develop a feasible therapeutic strategy.

【 授权许可】

   
2012 Kau et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713033020954.pdf 1315KB PDF download
Figure 5. 28KB Image download
Figure 4. 51KB Image download
Figure 3. 19KB Image download
Figure 2. 82KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Fukao T: Immune system paralysis by anthrax lethal toxin: the roles of innate and adaptive immunity. Lancet Infect Dis 2004, 4:166-170.
  • [2]Collier RJ, Young JA: Anthrax toxin. Annu Rev Cell Dev Biol 2003, 19:45-70.
  • [3]Kandadi MR, Hua Y, Ma H, Li Q, Kuo SR, Frankel AE, Ren J: Anthrax lethal toxin suppresses murine cardiomyocyte contractile function and intracellular Ca2+ handling via a NADPH oxidase-dependent mechanism. PLoS One 2010, 5:e13335.
  • [4]Moayeri M, Leppla SH: Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Aspects Med 2009, 30:439-455.
  • [5]Kau JH, Sun DS, Tsai WJ, Shyu HF, Huang HH, Lin HC, Chang HH: Antiplatelet activities of anthrax lethal toxin are associated with suppressed p42/44 and p38 mitogen-activated protein kinase pathways in the platelets. J Infect Dis 2005, 192:1465-1474.
  • [6]Culley NC, Pinson DM, Chakrabarty A, Mayo MS, Levine SM: Pathophysiological manifestations in mice exposed to anthrax lethal toxin. Infect Immun 2005, 73:7006-7010.
  • [7]Kuo SR, Willingham MC, Bour SH, Andreas EA, Park SK, Jackson C, Duesbery NS, Leppla SH, Tang WJ, Frankel AE: Anthrax toxin-induced shock in rats is associated with pulmonary edema and hemorrhage. Microb Pathog 2008, 44:467-472.
  • [8]Moayeri M, Haines D, Young HA, Leppla SH: Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J Clin Invest 2003, 112:670-682.
  • [9]Sun C, Fang H, Xie T, Auth RD, Patel N, Murray PR, Snoy PJ, Frucht DM: Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria. PLoS One 2012, 7:e33583.
  • [10]Veach RA, Zienkiewicz J, Collins RD, Hawiger J: Lethality in a murine model of pulmonary anthrax is reduced by combining nuclear transport modifier with antimicrobial therapy. PLoS One 2012, 7:e30527.
  • [11]Cui X, Moayeri M, Li Y, Li X, Haley M, Fitz Y, Correa-Araujo R, Banks SM, Leppla SH, Eichacker PQ: Lethality during continuous anthrax lethal toxin infusion is associated with circulatory shock but not inflammatory cytokine or nitric oxide release in rats. Am J Physiol Regul Integr Comp Physiol 2004, 286:R699-R709.
  • [12]Watson LE, Kuo SR, Katki K, Dang T, Park SK, Dostal DE, Tang WJ, Leppla SH, Frankel AE: Anthrax toxins induce shock in rats by depressed cardiac ventricular function. PLoS One 2007, 2:e466.
  • [13]Watson LE, Mock J, Lal H, Lu G, Bourdeau RW, Tang WJ, Leppla SH, Dostal DE, Frankel AE: Lethal and edema toxins of anthrax induce distinct hemodynamic dysfunction. Front Biosci 2007, 12:4670-4675.
  • [14]Moayeri M, Crown D, Dorward DW, Gardner D, Ward JM, Li Y, Cui X, Eichacker P, Leppla SH: The heart is an early target of anthrax lethal toxin in mice: a protective role for neuronal nitric oxide synthase (nNOS). PLoS Pathog 2009, 5:e1000456.
  • [15]Cotter G, Metra M, Milo-Cotter O, Dittrich HC, Gheorghiade M: Fluid overload in acute heart failure–re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail 2008, 10:165-169.
  • [16]Metra M, Felker GM, Zaca V, Bugatti S, Lombardi C, Bettari L, Voors AA, Gheorghiade M, Dei Cas L: Acute heart failure: multiple clinical profiles and mechanisms require tailored therapy. Int J Cardiol 2010, 144:175-179.
  • [17]Meyer MW, Gong K, Herzberg MC: Streptococcus sanguis-induced platelet clotting in rabbits and hemodynamic and cardiopulmonary consequences. Infect Immun 1998, 66:5906-5914.
  • [18]Herzberg MC, Weyer MW: Dental plaque, platelets, and cardiovascular diseases. Ann Periodontol 1998, 3:151-160.
  • [19]Idell S: Anticoagulants for acute respiratory distress syndrome: can they work? Am J Respir Crit Care Med 2001, 164:517-520.
  • [20]Wagers SS, Norton RJ, Rinaldi LM, Bates JH, Sobel BE, Irvin CG: Extravascular fibrin, plasminogen activator, plasminogen activator inhibitors, and airway hyperresponsiveness. J Clin Invest 2004, 114:104-111.
  • [21]Fourrier F, Chopin C, Goudemand J, Hendrycx S, Caron C, Rime A, Marey A, Lestavel P: Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest 1992, 101:816-823.
  • [22]Levi M, de Jonge E, van der Poll T: Sepsis and disseminated intravascular coagulation. J Thromb Thrombolysis 2003, 16:43-47.
  • [23]Van de Wouwer M, Collen D, Conway EM: Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004, 24:1374-1383.
  • [24]Hesselvik JF, Malm J, Dahlback B, Blomback M: Protein C, protein S and C4b-binding protein in severe infection and septic shock. Thromb Haemost 1991, 65:126-129.
  • [25]Lorente JA, Garcia-Frade LJ, Landin L, de Pablo R, Torrado C, Renes E, Garcia-Avello A: Time course of hemostatic abnormalities in sepsis and its relation to outcome. Chest 1993, 103:1536-1542.
  • [26]Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, Laszik Z, Esmon CT, Heyderman RS: Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 2001, 345:408-416.
  • [27]Ware LB, Fang X, Matthay MA: Protein C and thrombomodulin in human acute lung injury. Am J Physiol Lung Cell Mol Physiol 2003, 285:L514-L521.
  • [28]Li YH, Kuo CH, Shi GY, Wu HL: The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 2012, 19:34. BioMed Central Full Text
  • [29]Mina B, Dym JP, Kuepper F, Tso R, Arrastia C, Kaplounova I, Faraj H, Kwapniewski A, Krol CM, Grosser M, et al.: Fatal inhalational anthrax with unknown source of exposure in a 61-year-old woman in New York City. JAMA 2002, 287:858-862.
  • [30]Freedman A, Afonja O, Chang MW, Mostashari F, Blaser M, Perez-Perez G, Lazarus H, Schacht R, Guttenberg J, Traister M, Borkowsky W: Cutaneous anthrax associated with microangiopathic hemolytic anemia and coagulopathy in a 7-month-old infant. JAMA 2002, 287:869-874.
  • [31]Stearns-Kurosawa DJ, Lupu F, Taylor FB Jr, Kinasewitz G, Kurosawa S: Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am J Pathol 2006, 169:433-444.
  • [32]Levi M, Meijers JC: DIC: which laboratory tests are most useful. Blood Rev 2011, 25:33-37.
  • [33]Lin CG, Kao YT, Liu WT, Huang HH, Chen KC, Wang TM, Lin HC: Cytotoxic effects of anthrax lethal toxin on macrophage-like cell line J774A.1. Curr Microbiol 1996, 33:224-227.
  • [34]Kau JH, Sun DS, Huang HH, Wong MS, Lin HC, Chang HH: Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice. PLoS One 2009, 4:e4167.
  • [35]Kau JH, Sun DS, Huang HS, Lien TS, Huang HH, Lin HC, Chang HH: Sublethal doses of anthrax lethal toxin on the suppression of macrophage phagocytosis. PLoS One 2010, 5:e14289.
  • [36]Sun DS, King CC, Huang HS, Shih YL, Lee CC, Tsai WJ, Yu CC, Chang HH: Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost 2007, 5:2291-2299.
  • [37]Huang HS, Sun DS, Lien TS, Chang HH: Dendritic cells modulate platelet activity in IVIg-mediated amelioration of ITP in mice. Blood 2010, 116:5002-5009.
  • [38]Chang WK, Sun DS, Chan H, Huang PT, Wu WS, Lin CH, Tseng YH, Cheng YH, Tseng CC, Chang HH: Visible light-responsive core-shell structured In(2)O(3)@CaIn(2)O(4) photocatalyst with superior bactericidal properties and biocompatibility. Nanomedicine: nanotechnology, biology, and medicine 2012, 8:609-617.
  • [39]Burdick BA, Hilborn DA, Wu TW: A multilayer element for determining hemoglobin in whole blood: principles and analytical performance. Clin Chem 1986, 32:1953-1955.
  • [40]Han V, Serrano K, Devine DV: A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang 2010, 98:116-123.
  • [41]Kau JH, Lin CG, Huang HH, Hsu HL, Chen KC, Wu YP, Lin HC: Calyculin A Sensitive Protein Phosphatase Is Required for Bacillus anthracis Lethal Toxin Induced Cytotoxicity. Curr Microbiol 2002, 44:106-111.
  • [42]Yang JS, Nam HJ, Seo M, Han SK, Choi Y, Nam HG, Lee SJ, Kim S: OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 2011, 6:e23525.
  • [43]Beall FA, Dalldorf FG: The pathogenesis of the lethal effect of anthrax toxin in the rat. J Infect Dis 1966, 116:377-389.
  • [44]Wu AG, Alibek D, Li YL, Bradburne C, Bailey CL, Alibek K: Anthrax toxin induces hemolysis: an indirect effect through polymorphonuclear cells. J Infect Dis 2003, 188:1138-1141.
  • [45]Cui X, Li Y, Moayeri M, Choi GH, Subramanian GM, Li X, Haley M, Fitz Y, Feng J, Banks SM, et al.: Late treatment with a protective antigen-directed monoclonal antibody improves hemodynamic function and survival in a lethal toxin-infused rat model of anthrax sepsis. J Infect Dis 2005, 191:422-434.
  • [46]Idell S: Endothelium and disordered fibrin turnover in the injured lung: newly recognized pathways. Crit Care Med 2002, 30:S274-S280.
  • [47]Shafazand S, Doyle R, Ruoss S, Weinacker A, Raffin TA: Inhalational anthrax: epidemiology, diagnosis, and management. Chest 1999, 116:1369-1376.
  • [48]Abramova FA, Grinberg LM, Yampolskaya OV, Walker DH: Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc Natl Acad Sci USA 1993, 90:2291-2294.
  • [49]Bachofen M, Weibel ER: Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med 1982, 3:35-56.
  • [50]Abraham E: Coagulation abnormalities in acute lung injury and sepsis. Am J Respir Cell Mol Biol 2000, 22:401-404.
  • [51]Enhorning G, Holm BA: Disruption of pulmonary surfactant's ability to maintain openness of a narrow tube. J Appl Physiol 1993, 74:2922-2927.
  • [52]Seeger W, Stohr G, Wolf HR, Neuhof H: Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer. J Appl Physiol 1985, 58:326-338.
  • [53]Warfel JM, Steele AD, D’Agnillo F: Anthrax lethal toxin induces endothelial barrier dysfunction. Am J Pathol 2005, 166:1871-1881.
  • [54]Weber C, Zernecke A, Libby P: The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 2008, 8:802-815.
  • [55]Rezaie AR: Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem 2010, 17:2059-2069.
  • [56]Mackenzie AF: Activated protein C: do more survive? Intensive Care Med 2005, 31:1624-1626.
  • [57]Suter PM: Xigris is withdrawn from the market. A 10 year odyssey. Minerva Anestesiol 2011, 77:1129.
  • [58]Angus DC: The search for effective therapy for sepsis: back to the drawing board? JAMA 2011, 306:2614-2615.
  • [59]Welsh CH, Hassell KL, Badesch DB, Kressin DC, Marlar RA: Coagulation and fibrinolytic profiles in patients with severe pulmonary hypertension. Chest 1996, 110:710-717.
  • [60]Chung MC, Popova TG, Jorgensen SC, Dong L, Chandhoke V, Bailey CL, Popov SG: Degradation of circulating von Willebrand factor and its regulator ADAMTS13 implicates secreted Bacillus anthracis metalloproteases in anthrax consumptive coagulopathy. J Biol Chem 2008, 283:9531-9542.
  • [61]Chung MC, Jorgensen SC, Tonry JH, Kashanchi F, Bailey C, Popov S: Secreted Bacillus anthracis proteases target the host fibrinolytic system. FEMS Immunol Med Microbiol 2011, 62:173-181.
  • [62]Chung MC, Jorgensen SC, Popova TG, Tonry JH, Bailey CL, Popov SG: Activation of plasminogen activator inhibitor implicates protease InhA in the acute-phase response to Bacillus anthracis infection. J Med Microbiol 2009, 58:737-744.
  • [63]Chung MC, Popova TG, Millis BA, Mukherjee DV, Zhou W, Liotta LA, Petricoin EF, Chandhoke V, Bailey C, Popov SG: Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J Biol Chem 2006, 281:31408-31418.
  • [64]Shannon JG, Ross CL, Koehler TM, Rest RF: Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 2003, 71:3183-3189.
  • [65]Park JM, Ng VH, Maeda S, Rest RF, Karin M: Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 2004, 200:1647-1655.
  • [66]Bishop BL, Lodolce JP, Kolodziej LE, Boone DL, Tang WJ: The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection. Biochem Biophys Res Commun 2010, 394:254-259.
  • [67]Popova TG, Millis B, Bailey C, Popov SG: Platelets, inflammatory cells, von Willebrand factor, syndecan-1, fibrin, fibronectin, and bacteria co-localize in the liver thrombi of Bacillus anthracis-infected mice. Microb Pathog 2012, 52:1-9.
  文献评价指标  
  下载次数:85次 浏览次数:19次