Journal of Neuroinflammation | |
Rodent models of neuroinflammation for Alzheimer’s disease | |
Yousef Al-Abed1  Michael Bacher3  Roman Sankowski2  Amir Nazem2  | |
[1] Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset 11030, NY, USA;Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset 11030, NY, USA;Institute of Immunology, Philipps University Marburg, Hans-Meerwein-Str., Marburg, 35043, Germany | |
关键词: Tau protein; Amyloid-β; Innate immunity; Animal models; Neurodegeneration; Neuroinflammation; Alzheimer’s disease; | |
Others : 1226206 DOI : 10.1186/s12974-015-0291-y |
|
received in 2015-02-07, accepted in 2015-03-27, 发布年份 2015 | |
【 摘 要 】
Alzheimer’s disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer’s disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer’s disease. The etiology of late-onset Alzheimer’s disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer’s disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer’s disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer’s disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer’s disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer’s disease.
【 授权许可】
2015 Nazem et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150923100224607.pdf | 711KB | download | |
Figure 1. | 63KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Castellani RJ, Perry G: Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress. Arch Med Res 2012, 43(8):694-8.
- [2]Nazem A, Mansoori GA: Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis 2008, 13(2):199-223.
- [3]Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M: Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010, 9(7):702-16.
- [4]Sabbagh JJ, Kinney JW, Cummings JL: Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol Aging 2013, 34(1):169-83.
- [5]Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, et al.: Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 2012, 9:151.
- [6]Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M: Searching for new animal models of Alzheimer’s disease. Eur J Pharmacol 2010, 626(1):57-63.
- [7]Duyckaerts C, Potier MC, Delatour B: Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 2008, 115(1):5-38.
- [8]Chetelat G: Alzheimer disease: Abeta-independent processes-rethinking preclinical AD. Nat Rev Neurol 2013, 9(3):123-4.
- [9]Zlokovic BV: Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011, 12(12):723-38.
- [10]Ankarcrona M, Mangialasche F, Winblad B: Rethinking Alzheimer’s disease therapy: are mitochondria the key? J Alzheimers Dis 2010, 20(Suppl 2):S579-90.
- [11]Oresic M, Hyotylainen T, Herukka SK, Sysi-Aho M, Mattila I, Seppanan-Laakso T, et al.: Metabolome in progression to Alzheimer’s disease. Translational Psychiatry 2011., 1
- [12]Kuusisto J, Koivisto K, Mykkänen L, Helkala EL, Vanhanen M, Hänninen T, et al.: Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 1997, 315(7115):1045-9.
- [13]Krstic D, Knuesel I: Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013, 9(1):25-34.
- [14]Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A: Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets 2011, 10(5):621-34.
- [15]Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al.: Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007, 128(1):92-105.
- [16]Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG: Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009, 4:47.
- [17]Wyss-Coray T: Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006, 12(9):1005-15.
- [18]Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al.: TREM2 variants in Alzheimer’s disease. N Engl J Med 2013, 368(2):117-27.
- [19]Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al.: Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013, 368(2):107-16.
- [20]Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al.: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011, 43(5):436-41.
- [21]Puglielli L, Tanzi RE, Kovacs DM: Alzheimer’s disease: the cholesterol connection. Nat Neurosci 2003, 6(4):345-51.
- [22]Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA: Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis 2010, 7(1-3):38-41.
- [23]Ferretti MT, Cuello AC: Does a pro-inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res 2011, 8(2):164-74.
- [24]Buckwalter MS, Wyss-Coray T: Modelling neuroinflammatory phenotypes in vivo. J Neuroinflammation 2004, 1(1):10.
- [25]Frohman EM, Racke MK, Raine CS: Multiple sclerosis - the plaque and its pathogenesis. N Engl J Med 2006, 354(9):942-55.
- [26]Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al.: Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003, 100(14):8514-9.
- [27]Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al.: Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21(3):383-421.
- [28]Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF: Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 2009, 215(1):5-19.
- [29]Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W: Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 2013, 136(Pt 1):28-42.
- [30]Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L: Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology 2011, 76(18):1568-74.
- [31]Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8(1):57-69.
- [32]Streit WJ, Xue QS: Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 2014, 29:93-6.
- [33]Streit WJ, Braak H, Xue QS, Bechmann I: Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 2009, 118(4):475-85.
- [34]Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B: Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer’s disease: morphometric study and review of the literature. Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences 2012, 50(1):74-84.
- [35]Li W: Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev 2013, 12(4):1005-12.
- [36]Caldeira C, Oliveira AF, Cunha C, Vaz AR, Falcao AS, Fernandes A, et al.: Microglia change from a reactive to an age-like phenotype with the time in culture. Front Cell Neurosci 2014, 8:152.
- [37]Schwab C, Klegeris A, McGeer PL: Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta 2010, 1802(10):889-902.
- [38]Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ: Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2005, 2:23.
- [39]Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK: Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience 2009, 164(4):1484-95.
- [40]Burton M, Johnson R: Interleukin-6 trans-signaling in the senescent mouse brain is involved in infection-related deficits in contextual fear conditioning. Brain Behav Immun 2012, 26(5):732-8.
- [41]McLarnon JG: Correlated inflammatory responses and neurodegeneration in peptide-injected animal models of Alzheimer’s disease. Biomed Res Int 2014, 2014:923670.
- [42]Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM: Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 2005, 25(39):8843-53.
- [43]Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL: Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 1998, 780(2):294-303.
- [44]Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE: Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis 2003, 14(1):133-45.
- [45]Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al.: Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 1994, 179(1):269-77.
- [46]Rivest S: Regulation of innate immune responses in the brain. Nat Rev Immunol 2009, 9(6):429-39.
- [47]Mizuno T, Sawada M, Marunouchi T, Suzumura A: Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun 1994, 205(3):1907-15.
- [48]Welser-Alves JV, Milner R: Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int 2013, 63(1):47-53.
- [49]Bardou I, Kaercher RM, Brothers HM, Hopp SC, Royer S, Wenk GL: Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem. Neurobiol Aging 2014, 35(5):1065-73.
- [50]Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al.: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008, 5:37.
- [51]Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF: Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun 2015, 44:159-66.
- [52]Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM: Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 2007, 28(3):327-35.
- [53]Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers H, et al.: The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS One 2012., 7(9) Article ID e45250
- [54]Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL: Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res 2000, 859(1):157-66.
- [55]Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Soldato P, Fiorucci S: Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur J Pharmacol 2000, 402(1-2):77-85.
- [56]Hafting T, Fyhn M, Molden S, Moser MB, Moser EI: Microstructure of a spatial map in the entorhinal cortex. Nature 2005, 436(7052):801-6.
- [57]Hauss-Wegrzyniak B, Lynch MA, Vraniak PD, Wenk GL: Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp Neurol 2002, 176(2):336-41.
- [58]DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D: Intrahippocampal LPS injections reduce Abeta load in APP + PS1 transgenic mice. Neurobiol Aging 2001, 22(6):1007-12.
- [59]Deng XH, Ai WM, Lei DL, Luo XG, Yan XX, Li Z: Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience 2012, 209:161-70.
- [60]Liu Y, Qin L, Wilson B, Wu X, Qian L, Granholm AC, et al.: Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology 2008, 29(5):864-70.
- [61]Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6(4):193-201.
- [62]Perry VH: Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010, 120(3):277-86.
- [63]Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA, Alexopoulou L, et al.: Microglia recognize double-stranded RNA via TLR3 recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. J Immunol 2006, 176(6):3804-12.
- [64]De Miranda J, Yaddanapudi K, Hornig M, Villar G, Serge R, Lipkin WI. Induction of toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. MBio. 2010;1(4). doi:10.1128/mBio.00176-10.
- [65]Kimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM: Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Physiol 1994, 267(6 Pt 2):R1596-605.
- [66]Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, et al.: The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 2006, 26(18):4752-62.
- [67]Bilbo SD, Smith SH, Schwarz JM: A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol 2012, 7(1):24-41.
- [68]Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U: Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 2010, 35(12):2462-78.
- [69]Hoyer S, Nitsch R: Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm (Vienna, Austria: 1996) 1989, 75(3):227-32.
- [70]Hoyer S, Nitsch R, Oesterreich K: Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm Park Dis Dement Sect 1991, 3(1):1-14.
- [71]Craft S, Zallen G, Baker LD: Glucose and memory in mild senile dementia of the Alzheimer type. J Clin Exp Neuropsychol 1992, 14(2):253-67.
- [72]Sims-Robinson C, Kim B, Rosko A, Feldman EL: How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010, 6(10):551-9.
- [73]Yamamoto H, Uchigata Y, Okamoto H: Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature 1981, 294(5838):284-6.
- [74]Mansford KR, Opie L: Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. Lancet 1968, 1(7544):670-1.
- [75]Like AA, Rossini AA: Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 1976, 193(4251):415-7.
- [76]Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP: Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 2008, 11(3):309-17.
- [77]Wang JQ, Yin J, Song YF, Zhang L, Ren YX, Wang DG, et al.: Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J Diabetes Res 2014, 2014:796840.
- [78]Lenzen S: The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008, 51(2):216-26.
- [79]Szkudelski T: The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001, 50(6):537-46.
- [80]Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T: Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes 1991, 40(9):1141-5.
- [81]Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML: Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun 1993, 197(3):1458-64.
- [82]Murata M, Takahashi A, Saito I, Kawanishi S: Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol 1999, 57(8):881-7.
- [83]Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, et al.: Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 1999, 96(6):3059-64.
- [84]Mensah-Brown EP, Obineche EN, Galadari S, Chandranath E, Shahin A, Ahmed I, et al.: Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine 2005, 31(3):180-90.
- [85]Chen YLZ, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, et al.: A non-transgenic mouse model (icv-STZ Mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD Mouse). Mol Neurobiol 2013, 47(2):711-25.
- [86]Nitsch R, Hoyer S: Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett 1991, 128(2):199-202.
- [87]Plaschke K, Hoyer S: Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci 1993, 11(4):477-83.
- [88]Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM: Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimer’s Disease: JAD 2006, 9(1):13-33.
- [89]Kraska ASM, Dorieux O, Joseph-Mathurin N, Bourrin E, Petit F, Jan C, et al.: In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One 2012., 7(9)
- [90]Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, et al.: Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 2014, 49(1):547-62.
- [91]Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, et al.: Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 2010, 19(2):691-704.
- [92]Ke YD, Delerue F, Gladbach A, Götz J, Ittner LM: Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. PLoS One 2009., 4(11)
- [93]Devi L, Alldred MJ, Ginsberg SD, Ohno M: Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 2012, 7(3):e32792.
- [94]Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E: Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol 2010, 223(2):422-31.
- [95]Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, et al. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl). 2013. doi:10.1007/s00213-013-3240-4.
- [96]Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner M, Hoyer S, Arendt T, Riederer P: Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm 2011, 118(5):765-72.
- [97]Grünblatt ES-PM, Osmanovic J, Riederer P, Hoyer S: Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 2007, 101(3):757-70.
- [98]Tapia R, Pena F, Arias C: Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochem Res 1999, 24(11):1423-30.
- [99]Sontag JM, Sontag E: Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 2014, 7:16.
- [100]Cohen PT, Brewis ND, Hughes V, Mann DJ: Protein serine/threonine phosphatases; an expanding family. FEBS Lett 1990, 268(2):355-9.
- [101]Kamat PK, Tota S, Rai S, Shukla R, Ali S, Najmi AK, et al.: Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. Eur J Pharmacol 2012, 690(1-3):90-8.
- [102]Costa AP, Tramontina AC, Biasibetti R, Batassini C, Lopes MW, Wartchow KM, et al.: Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behav Brain Res 2012, 226(2):420-7.
- [103]Kamat PK, Tota S, Saxena G, Shukla R, Nath C: Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res 2010, 1309:66-74.
- [104]Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C: Molecular and cellular mechanism of okadaic acid (OKA)-induced neurotoxicity: a novel tool for Alzheimer’s disease therapeutic application. Mol Neurobiol 2014, 50(3):852-65.
- [105]Arendt T, Holzer M, Fruth R, Bruckner MK, Gartner U: Phosphorylation of tau, Abeta-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol Aging 1998, 19(1):3-13.
- [106]Lee J, Hong H, Im J, Byun H, Kim D: The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett 2000, 282(1-2):49-52.
- [107]Kamat PK, Tota S, Rai S, Swarnkar S, Shukla R, Nath C: A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci 2012, 90(19-20):713-20.
- [108]Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, et al.: Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 2013, 715(1-3):381-94.
- [109]Kamat PK, Rai S, Swarnkar S, Shukla R, Ali S, Najmi AK, et al.: Okadaic acid-induced tau phosphorylation in rat brain: role of NMDA receptor. Neuroscience 2013, 238:97-113.
- [110]Zimmer ER, Kalinine E, Haas CB, Torrez VR, Souza DO, Muller AP, et al.: Pretreatment with memantine prevents Alzheimer-like alterations induced by intrahippocampal okadaic acid administration in rats. Curr Alzheimer Res 2012, 9(10):1182-90.
- [111]Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C: Mechanism of synapse redox stress in okadaic acid (ICV) induced memory impairment: role of NMDA receptor. Neurochem Int 2014, 76:32-41.
- [112]Valdiglesias V, Laffon B, Pasaro E, Cemeli E, Anderson D, Mendez J: Induction of oxidative DNA damage by the marine toxin okadaic acid depends on human cell type. Toxicon 2011, 57(6):882-8.
- [113]Kumar A, Seghal N, Naidu PS, Padi SS, Goyal R: Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer’s type. Pharmacol Rep 2007, 59(3):274-83.
- [114]Nakayama T, Sawada T: Involvement of microtubule integrity in memory impairment caused by colchicine. Pharmacol Biochem Behav 2002, 71(1-2):119-38.
- [115]Tilson HA, Rogers BC, Grimes L, Harry GJ, Peterson NJ, Hong JS, et al.: Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats. Brain Res 1987, 408(1-2):163-72.
- [116]Ho L, Osaka H, Aisen PS, Pasinetti GM: Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death. J Neuroimmunol 1998, 89(1-2):142-9.
- [117]Sil S, Goswami AR, Dutta G, Ghosh T: Effects of naproxen on immune responses in a colchicine-induced rat model of Alzheimer’s disease. Neuroimmunomodulation 2014, 21(6):304-21.
- [118]Geddes JW, Bondada V, Keller JN: Effects of intrahippocampal colchicine administration on the levels and localization of microtubule-associated proteins, tau and MAP2. Brain Res 1994, 633(1-2):1-8.
- [119]McMartin DN, Schedlbauer LM: Effect of experimental colchicine encephalopathy on brain protein synthesis and tubulin metabolism. J Neurobiol 1978, 9(6):453-63.
- [120]Merrick SE, Demoise DC, Lee VM: Site-specific dephosphorylation of tau protein at Ser202/Thr205 in response to microtubule depolymerization in cultured human neurons involves protein phosphatase 2A. J Biol Chem 1996, 271(10):5589-94.
- [121]Shaftel SS, Griffin WS, O’Banion MK: The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008, 5:7.
- [122]Alboni S, Cervia D, Sugama S, Conti B: Interleukin 18 in the CNS. J Neuroinflammation 2010, 7:9.
- [123]Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al.: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 1989, 86(19):7611-5.
- [124]Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T: Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 2009, 30(2):198-209.
- [125]Malaguarnera L, Motta M, Di Rosa M, Anzaldi M, Malaguarnera M: Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology 2006, 26(4):307-12.
- [126]Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK: Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 2007, 117(6):1595-604.
- [127]Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, O’Banion MK: Chronic IL-1beta-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol 2012, 7(1):156-64.
- [128]Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, Laferla FM, Olschowka JA, et al.: Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 2013, 11:5053-64.
- [129]Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132(Pt 2):288-95.
- [130]Norden DM, Muccigrosso MM, Godbout JP., Microglial Priming and Enhanced Reactivity to Secondary Insult in Aging, and Traumatic CNS injury, and Neurodegenerative Disease., Neuropharmacology. 2014. pii: S0028-3908(14)00403-1. doi: 10.1016/j.neuropharm.2014.10.028.
- [131]Smith MZ, Nagy Z, Esiri MM: Cell cycle-related protein expression in vascular dementia and Alzheimer’s disease. Neurosci Lett 1999, 271(1):45-8.
- [132]Yang Y, Geldmacher DS, Herrup K: DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 2001, 21(8):2661-8.
- [133]Smith TW, Lippa CF: Ki-67 immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. J Neuropathol Exp Neurol 1995, 54(3):297-303.
- [134]Busser J, Geldmacher DS, Herrup K: Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci 1998, 18(8):2801-7.
- [135]Morgan DO: Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997, 13:261-91.
- [136]Nikolic M, Dudek H, Kwon YT, Ramos YF, Tsai LH: The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 1996, 10(7):816-25.
- [137]Hellmich MR, Pant HC, Wada E, Battey JF: Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci U S A 1992, 89(22):10867-71.
- [138]Tsai LH, Delalle I, Caviness VS, Chae T, Harlow E: p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 1994, 371(6496):419-23.
- [139]Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999, 402(6762):615-22.
- [140]Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH: Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000, 405(6784):360-4.
- [141]Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, et al.: Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 2000, 97(6):2910-5.
- [142]Monaco EA: Recent evidence regarding a role for Cdk5 dysregulation in Alzheimer’s disease. Curr Alzheimer Res 2004, 1(1):33-8.
- [143]Sundaram JR, Chan ES, Poore CP, Pareek TK, Cheong WF, Shui G, et al.: Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci 2012, 32(3):1020-34.
- [144]Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH: Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 2005, 48(5):825-38.
- [145]Muyllaert D, Terwel D, Kremer A, Sennvik K, Borghgraef P, Devijver H, et al.: Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. Am J Pathol 2008, 172(2):470-85.
- [146]Houeland G, Romani A, Marchetti C, Amato G, Capsoni S, Cattaneo A, et al.: Transgenic mice with chronic NGF deprivation and Alzheimer’s disease-like pathology display hippocampal region-specific impairments in short- and long-term plasticities. J Neurosci 2010, 30(39):13089-94.
- [147]Capsoni S, Tiveron C, Vignone D, Amato G, Cattaneo A: Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc Natl Acad Sci U S A 2010, 107(27):12299-304.
- [148]De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, et al.: Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A 2005, 102(10):3811-6.
- [149]Capsoni S, Giannotta S, Cattaneo A: Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 2002, 21(1):15-28.
- [150]Capsoni S, Cattaneo A: On the molecular basis linking nerve growth factor (NGF) to Alzheimer’s disease. Cell Mol Neurobiol 2006, 26(4-6):619-33.
- [151]D’Onofrio M, Arisi I, Brandi R, Di Mambro A, Felsani A, Capsoni S, et al.: Early inflammation and immune response mRNAs in the brain of AD11 anti-NGF mice. Neurobiol Aging 2011, 32(6):1007-22.
- [152]Capsoni S, Brandi R, Arisi I, D’Onofrio M, Cattaneo A: A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS Neurol Disord Drug Targets 2011, 10(5):635-47.
- [153]Capsoni S, Tiveron C, Amato G, Vignone D, Cattaneo A: Peripheral neutralization of nerve growth factor induces immunosympathectomy and central neurodegeneration in transgenic mice. J Alzheimers Dis 2010, 20(2):527-46.
- [154]Tzanoulinou S, Brandi R, Arisi I, D’Onofrio M, Urfer SM, Sandi C, et al.: Pathogen-free husbandry conditions alleviate behavioral deficits and neurodegeneration in AD10 anti-NGF mice. J Alzheimers Dis 2014, 38(4):951-64.
- [155]Flanders KC, Ren RF, Lippa CF: Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998, 54(1):71-85.
- [156]Ueberham U, Ueberham E, Bruckner MK, Seeger G, Gartner U, Gruschka H, et al.: Inducible neuronal expression of transgenic TGF-beta1 in vivo: dissection of short-term and long-term effects. Eur J Neurosci 2005, 22(1):50-64.
- [157]Unsicker K, Krieglstein K: TGF-betas and their roles in the regulation of neuron survival. Adv Exp Med Biol 2002, 513:353-74.
- [158]Grammas P, Ovase R: Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol 2002, 160(5):1583-7.
- [159]Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al.: TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 2001, 7(5):612-8.
- [160]Brionne TC, Tesseur I, Masliah E, Wyss-Coray T: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 2003, 40(6):1133-45.
- [161]Wyss-Coray T, Mucke L: Inflammation in neurodegenerative disease - a double-edged sword. Neuron 2002, 35(3):419-32.
- [162]Dhull DK, Jindal A, Dhull RK, Aggarwal S, Bhateja D, Padi SS: Neuroprotective effect of cyclooxygenase inhibitors in ICV-STZ induced sporadic Alzheimer’s disease in rats. J Mol Neurosci 2012, 46(1):223-35.
- [163]Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI: Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986, 83(13):4913-7.
- [164]Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, Kugler S, et al.: Alzheimer’s disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta 2010, 1802(10):808-18.
- [165]Pintado C, Gavilan MP, Gavilan E, Garcia-Cuervo L, Gutierrez A, Vitorica J, et al.: Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation 2012, 9(1):87.
- [166]Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al.: Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 2010, 107(13):6058-63.
- [167]Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, et al.: Changes in amyloid-β and tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med 2013, 5(194):194re2.