Frontiers in Zoology | |
Mandible evolution in the Scarabaeinae (Coleoptera: Scarabaeidae) and adaptations to coprophagous habits | |
Xingke Yang2  Yijie Tong2  Haidong Yang2  Yuanyuan Lu1  Sha Li1  Ming Bai2  | |
[1] University of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, Shijingshan, P. R. China;Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing 100101, Chaoyang District, People’s Republic Of China | |
关键词: Geometric morphometric; 3D; Mouthparts; Dung beetle; Coprophagy; | |
Others : 1229884 DOI : 10.1186/s12983-015-0123-z |
|
received in 2015-10-07, accepted in 2015-10-11, 发布年份 2015 |
【 摘 要 】
Introduction
The astonishing spectrum of scarabaeine lifestyles makes them an attractive group for studies in entomology and evolutionary biology. As a result of adaptions to specific food substrates and textures, the mouthparts of dung beetles, particularly the mandible, have undergone considerable evolutionary changes and differ distinctly from the presumptive ancestral conditions of the Coleoptera and Polyphaga. The possible functions of dung beetle mouthparts and the evolution of dung feeding have been controversial for decades.
Results
In this study, 187 scarabs representing all tribes of the Scarabaeinae and the major lineages within the Scarabaeoidea, along with three major feeding types within the Scarabaeoidea (omnivory, phytophagy and coprophagy), were studied. Based on geometric morphometric and three-dimensional (3D) reconstruction approaches, morphological differences in mandibles among the three feeding types were identified. The ancestral forms of the mandible within the Scarabaeinae were reconstructed and compared with those of modern species. The most recent common ancestor of the Scarabaeinae fed on soft materials, and the ancestor of the Scarabaeinae and the Aphodiinae was in an evolutionary transition between processing more solid and softer substrates.
Conclusions
Coprophagy originated from omnivorous ancestors that were very likely saprophagous. Furthermore, phytophagy may also have originated from omnivory. In addition, our study addresses the integration and modularity of geometric morphometric data in a phylogenetic context.
【 授权许可】
2015 Bai et al.
Files | Size | Format | View |
---|---|---|---|
Fig. 6. | 93KB | Image | download |
Fig. 5. | 121KB | Image | download |
Fig. 4. | 102KB | Image | download |
Fig. 3. | 140KB | Image | download |
Fig. 2. | 56KB | Image | download |
Fig. 1. | 58KB | Image | download |
Fig. 6. | 93KB | Image | download |
Fig. 1. | 114KB | Image | download |
Fig. 4. | 102KB | Image | download |
Fig. 3. | 140KB | Image | download |
Fig. 2. | 56KB | Image | download |
Fig. 1. | 58KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 1.
Fig. 6.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Bai M, Yang XK. Nesting behavior and adaptive evolution of dung beetle. Chin Bull Entomol. 2008; 45:499-505.
- [2]Bai M, McCullough E, Song KQ, Liu WG, Yang XK. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae). Plos One. 2011; 6(6):e21600.
- [3]Hanski I, Cambefort Y. Dung Beetle Ecology. Princeton University Press, Princeton; 1991.
- [4]Scholtz CH, Davis ALV, Kryger U. Evolutionary Biology and Conservation of Dung Beetles. Pensoft Publisher, Sofia; 2009.
- [5]Forgie SA, Grebennikov VV, Scholtz CH. Revision of Sceliages Westwood, a millipede-eating genus of southern African dung beetles (Coleoptera: Scarabaeidae). Invert Syst. 2002; 16:931-955.
- [6]Krell FT, Schmitt T, Linsenmair KE. Diplopod defensive secretions as attractants for necrophagous scarab beetles (Diplopoda; Insecta, Coleoptera: Scarabaeidae). Entomol Scandin. 1997; 51:281-285.
- [7]Villalobos FJ, Diaz A, Favila MW. Two species of Canthon Hoffmannsegg (Coleoptera: Scarabaeidae) feed on dead and live invertebrates. Coleopts Bull. 1998; 52:101-104.
- [8]Halffter G, Matthews EG. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomol Mex. 1966; 12–14:1-312.
- [9]Holter P. Particle feeding in Aphodius dung beetles (Scarabaeidae): old hypotheses and new experimental evidence. Funct Ecol. 2000; 14:631-637.
- [10]Holter P, Scholtz CH, Wardhaugh KG. Dung feeding in adult scarabaeines (tunnellers and endocoprids): even large dung beetles eat small particles. Ecol Entomol. 2002; 27:169-176.
- [11]Holter P, Scholtz CH. Are ball-rolling (Scarabaeini, Gymnopleurini, Sisyphini) and tunnelling scarabaeine dung beetles equally choosy about the size of ingested dung particles? Ecol Entomol. 2005; 30:700-705.
- [12]Holter P, Scholtz CH. What do dung beetles eat? Ecol Entomol. 2007; 32:690-697.
- [13]Holter P, Scholtz CH. Re-establishment of biting mouthparts in desert-living dung beetles (Scarabaeidae: Scarabaeinae) feeding on plant litter—old structures reacquired or new ones evolved? J Morphol. 2011; 272:1007-1016.
- [14]Yin H, Ren GD. Morphological study on the mouthparts of adult saprophagous scarab beetles (Coleoptera: Scarabaeoidea). Entomotaxonomia. 2005; 27(2):103-110.
- [15]Bai M, Jarvis K, Wang SY, Song KQ, Wang YP, Wang ZL et al.. A second new species of ice crawlers from China (Insecta: Grylloblattodea), with thorax evolution and the prediction of potential distribution. Plos One. 2010; 5(9):e12850.
- [16]Bai M, Beutel RG, Shih CK, Ren D, Yang XK. Septiventeridae, a new and ancestral fossil family of Scarabaeoidea (Insecta: Coleoptera) from the Late Jurassic to Early Cretaceous Yixian Formation. J Syst Palaeontol. 2013; 11:359-374.
- [17]Bai M, Yang XK, Li J, Wang WC. Geometric Morphometrics, a super scientific computing tool in morphology comparison. Chin Science Bull. 2014; 59:887-894.
- [18]Lu T, Wang HZ, Wang X, Chen TF, Yang SW, Zhang XM. Study on the Biological Properties of Lethrus apterus. Acta Agrstia Sinica. 2001; 9(4):287-289.
- [19]Carlson DC, Ritcher PO. A new genus of Ochodaeinae and a description of the larva of Pseudochodaeus estriatus (Schaeffer) (Coleoptera: Scarabaeidae). Pan-Pacific Entomol. 1974; 50:99-110.
- [20]Ahrens D, Schwarzer J, Vogler AP. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc R Soc B. 2014; 281:20141470.
- [21]Browne DJ, Scholtz CH. Evolution of the scarab hindwing articulation and wing base: a contribution towards the phylogeny of the Scarabaeidae (Coleoptera: Scarabaeoidae). Syst Entomol. 1998; 23:307-326.
- [22]Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R et al.. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007; 318:1913-1916.
- [23]Rohlf FJ. tps-DIG, Digitize Landmarks and Outlines, Version 2.05. [Software and Manual]. Department of Ecology and Evolution. State University of New York at Stony Brook, New York; 2006.
- [24]Bookstein FL. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, New York; 1991.
- [25]Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011; 11:353-357.
- [26]Monaghan MT, Inward DJG, Hunt T, Vogler AP. A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). Mol Phylogenet Evol. 2007; 45:674-692.
- [27]Philips TK, Pretorius E, Scholtz CH. A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): unrolling an evolutionary history. Invert Syst. 2004; 18:53-88.
- [28]Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis Version 2.75. 2011. http://mesquiteproject. org webcite
- [29]Grafen A. The phylogenetic regression. Philos Trans R Soc B-Biol Sci. 1989; 326:119-157.
- [30]Klingenberg CP, Marugán-Lobón J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst Biol. 2013; 62:591-610.
- [31]Rohlf FJ. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, Version 2.20 for Windows [Software and Manual]. Exeter Software, New York; 2007.
- [32]Rohlf FJ. Relative-warp analysis and example of its application to mosquito wings. In: Contributions to Morphometrics. Marcus LF, Bello E, Garcia-Valdecasas A, editors. Museo Nacional de Ciencias Naturales, Madrid; 1993: p.131-159.
- [33]Krell FT. The fossil record of Mesozoic and Tertiary Scarabaeoidea (Coleoptera: Polyphaga). Invert Taxon. 2000; 14:871-905.
- [34]Bai M, Beutel RG, Song KQ, Liu WG, Malqin H, Li S et al.. Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Struct Dev. 2012; 4:505-513.
- [35]Nikolajev GV. Mezozoiskii Etap Evolyutsii Plastinchatousykh (Insecta: Coleoptera: Scarabaeoidea). Kazak Universiteti, Almaty; 2007.
- [36]Krell FT. Catalogue of fossil Scarabaeoidea (Coleoptera: Polyphaga) of the Mesozoic and Tertiary–Version 2007. Denver Mus Nat Sci, Tech Rep. 2007; 8:1-81.
- [37]Yan Z, Bai M, Ren D. A new fossil Hybosoridae (Coleoptera: Scarabaeoidea) from the Yixian Formation of China. Zootaxa. 2012; 3478:201-204.
- [38]Yan Z, Bai M, Ren D. A new genus and species of fossil Hybosoridae (Coleoptera: Scarabaeoidea) from the Early Cretaceous Yixian Formation of Liaoning. China Alcheringa. 2013; 37(2):139-145.