期刊论文详细信息
Journal of Hematology & Oncology
CBFB-MYH11 hypomethylation signature and PBX3 differential methylation revealed by targeted bisulfite sequencing in patients with acute myeloid leukemia
Vladimír Bene¿2  Petr Cetkovský3  Kyra Michalová1  Ota Fuchs4  Martin Vostrý4  Arno¿t Koste?ka4  Michaela Dostálová Merkerová4  Zden?k Krej?ík4  Jana Marková3  Cyril ¿álek3  Ji?í Schwarz3  Cedrik Ha¿kovec4  Markus Hsi-Yang Fritz2  Hana Hájková4 
[1] Center of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, U Nemocnice 2, Prague, Czech Republic;European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg, Germany;Clinical Department, Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, Czech Republic;Department of Molecular Genetics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, Czech Republic
关键词: PBX3;    Targeted bisulfite sequencing;    DNA methylation;    CBFB-MYH11;    Acute myeloid leukemia;   
Others  :  1144296
DOI  :  10.1186/s13045-014-0066-4
 received in 2014-03-25, accepted in 2014-09-06,  发布年份 2014
PDF
【 摘 要 】

Background

Studying DNA methylation changes in the context of structural rearrangements and point mutations as well as gene expression changes enables the identification of genes that are important for disease onset and progression in different subtypes of acute myeloid leukemia (AML) patients. The aim of this study was to identify differentially methylated genes with potential impact on AML pathogenesis based on the correlation of methylation and expression data.

Methods

The primary method of studying DNA methylation changes was targeted bisulfite sequencing capturing approximately 84 megabases (Mb) of the genome in 14 diagnostic AML patients and a healthy donors¿ CD34+ pool. Subsequently, selected DNA methylation changes were confirmed by 454 bisulfite pyrosequencing in a larger cohort of samples. Furthermore, we addressed gene expression by microarray profiling and correlated methylation of regions adjacent to transcription start sites with expression of corresponding genes.

Results

Here, we report a novel hypomethylation pattern, specific to CBFB-MYH11 fusion resulting from inv(16) rearrangement that is associated with genes previously described as upregulated in inv(16) AML. We assume that this hypomethylation and corresponding overexpresion occurs in the genes whose function is important in inv(16) leukemogenesis. Further, by comparing all targeted methylation and microarray expression data, PBX3 differential methylation was found to correlate with its gene expression. PBX3 has been recently shown to be a key interaction partner of HOX genes during leukemogenesis and we revealed higher incidence of relapses in PBX3-overexpressing patients.

Conclusions

We discovered new genomic regions with aberrant DNA methylation that are associated with expression of genes involved in leukemogenesis. Our results demonstrate the potential of the targeted approach for DNA methylation studies to reveal new regulatory regions.

【 授权许可】

   
2014 Hajkova et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330113124187.pdf 1472KB PDF download
Figure 6. 38KB Image download
Figure 5. 16KB Image download
Figure 4. 51KB Image download
Figure 3. 54KB Image download
Figure 2. 43KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Sonnet M, Claus R, Becker N, Zucknick M, Petersen J, Lipka DB, Oakes CC, Andrulis M, Lier A, Milsom MD, Witte T, Gu L, Kim-Wanner S, Schirmacher P, Wulfert M, Gattermann N, Luebbert M, Rosenbauer F, Rehli M, Bullinger L, Weichenhan D, Plass C: Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia. Genome Med 2014, 6:34. BioMed Central Full Text
  • [2]Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJM, Lowenberg B, Delwel R, Melnick A: DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010, 17(1):13-27.
  • [3]Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia N Engl J Med 2013, 368(22):2059-2074.
  • [4]Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL, Allis CD, Roeder RG, Valk PJM, Lowenberg B, Delwel R, Fernandez HF, Paietta E, Tallman MS, Schroth GP, Mason CE, Melnick A, Figueroa ME: Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 2012, 8(6):e1002781.
  • [5]Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13(7):484-492.
  • [6]Ivanov M, Kals M, Kacevska M, Metspalu A, Ingelman-Sundberg M, Milani L: In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes. Nucleic Acids Res 2013, 41(6):e72.
  • [7]Sproul D, Kitchen RR, Nestor CE, Dixon JM, Sims AH, Harrison DJ, Ramsahoye BH, Meehan RR: Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol 2012, 13(10):R84. BioMed Central Full Text
  • [8]Valk P, Verhaak R, Beijen M, Erpelinck C, van Doorn-Khosrovani S, Boer J, Beverloo H, Moorhouse M, van der Spek P, Lowenberg B, Delwel R: Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004, 350(16):1617-1628.
  • [9]Li Z, Zhang Z, Li Y, Arnovitz S, Chen P, Huang H, Jiang X, Hong G, Kunjamma RB, Ren H, He C, Wang C, Elkahloun AG, Valk PJM, Doehner K, Neilly MB, Bullinger L, Delwel R, Lowenberg B, Liu PP, Morgan R, Rowley JD, Yuan C, Chen J: PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 2013, 121(8):1422-1431.
  • [10]Suzuki R, Shimodaira H: Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22(12):1540-1542.
  • [11]McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G: GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010, 28(5):495-U155.
  • [12]Dickson GJ, Liberante FG, Kettyle LM, O¿Hagan KA, Finnegan DPJ, Bullinger L, Geerts D, McMullin MF, Lappin TRJ, Mills KI, Thompson A: HOXA/PBX3 knockdown impairs growth and sensitizes cytogenetically normal acute myeloid leukemia cells to chemotherapy. Haematologica 2013, 98(8):1216-1225.
  • [13]de la Bletiere DR, Blanchet O, Cornillet-Lefebvre P, Coutolleau A, Baranger L, Genevieve F, Luquet I, Hunault-Berger M, Beucher A, Schmidt-Tanguy A, Zandecki M, Delneste Y, Ifrah N, Guardiola P: Routine use of microarray-based gene expression profiling to identify patients with low cytogenetic risk acute myeloid leukemia: accurate results can be obtained even with suboptimal samples. BMC Med Genet 2012, 5:6.
  • [14]Mandoli A, Singh AA, Jansen PWTC, Wierenga ATJ, Riahi H, Franci G, Prange K, Saeed S, Vellenga E, Vermeulen M, Stunnenberg HG, Martens JHA: CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia 2014, 28(4):770-778.
  • [15]Heuser M, Beutel G, Krauter J, Doehner K, von Neuhoff N, Schlegelberger B, Ganser A: High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 2006, 108(12):3898-3905.
  • [16]Langer C, Marcucci G, Holland KB, Radmacher MD, Maharry K, Paschka P, Whitman SP, Mrozek K, Baldus CD, Vij R, Powell BL, Carroll AJ, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD: Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and MicroRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2009, 27(19):3198-3204.
  • [17]Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 1998, 92(7):2322-2333.
  • [18]Mrózek K, Bloomfield CD: Clinical significance of the most common chromosome translocations in adult acute myeloid leukemia. JNCI Monogr 2008, 2008(39):52-57.
  • [19]Carella C, Bonten J, Sirma S, Kranenburg TA, Terranova S, Klein-Geltink R, Shurtleff S, Downing JR, Zwarthoff EC, Liu PP, Grosveld GC: MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 2007, 21(8):1679-1690.
  • [20]Chang C, Brocchieri L, Shen W, Largman C, Cleary M: Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol Cell Biol 1996, 16(4):1734-1745.
  • [21]Itonaga H, Imanishi D, Wong Y, Sato S, Ando K, Sawayama Y, Sasaki D, Tsuruda K, Hasegawa H, Imaizumi Y, Taguchi J, Tsushima H, Yoshida S, Fukushima T, Hata T, Moriuchi Y, Yanagihara K, Miyazaki Y: Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B. Leukemia 2014, 28(7):1459-1466.
  • [22]Schneider M, Szaumkessel M, Richter J, Ammerpohl O, Hansmann ML, Küppers R, Siebert R, Giefing M: The PRDX2 gene is transcriptionally silenced and de novo methylated in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Blood 2014, 123(23):3672-3674.
  • [23]Jiang D, Hong Q, Shen Y, Xu Y, Zhu H, Li Y, Xu C, Ouyang G, Duan S: The diagnostic value of DNA methylation in leukemia: a systematic review and meta-analysis. PLoS One 2014, 9(5):e96822.
  • [24]Markova J, Trnkova Z, Michkova P, Maaloufova J, Stary J, Cetkovsky P, Schwarz J: Monitoring of minimal residual disease in patients with core binding factor acute myeloid leukemia and the impact of C-KIT, FLT3, and JAK2 mutations on clinical outcome. Leuk Lymphoma 2009, 50(9):1448-1460.
  • [25]Pitiot AS, Santamaria I, Garcia-Suarez O, Centeno I, Astudillo A, Rayon C, Balbin M: A new type of NPM1 gene mutation in AML leading to a C-terminal truncated protein. Leukemia 2007, 21(7):1564-1566.
  • [26]Fuchs O, Provamikova D, Kocova M, Kostecka A, Cvekova P, Neuwirtova R, Kobylka P, Cermak J, Brozinova J, Schwarz J, Markova J, Salaj P, Klamova H, Maaloufova J, Lemez P, Novakova L, Benesova K: CEBPA polymorphisms and mutations in patients with acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and non-Hodgkin¿s lymphoma. Blood Cells Mol Dis 2008, 40(3):401-405.
  • [27]Markova J, Michkova P, Burckova K, Brezinova J, Michalova K, Dohnalova A, Maaloufova JS, Soukup P, Vitek A, Cetkovsky P, Schwarz J: Prognostic impact of DNMT3A mutations in patients with intermediate cytogenetic risk profile acute myeloid leukemia. Eur J Haematol 2012, 88(2):128-135.
  • [28]Caligiuri M, Strout M, Schichman S, Mrozek K, Arthur D, Herzig G, Baer M, Schiffer C, Heinonen K, Knuutila S, Nousiainen T, Ruutu T, Block A, Schulman P, PedersenBjergaard J, Croce C, Bloomfield C: Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 1996, 56(6):1418-1425.
  • [29]Shiah H, Kuo Y, Tang J, Huang S, Yao M, Tsay W, Chen Y, Wang C, Shen M, Lin D, Lin K, Tien H: Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia 2002, 16(2):196-202.
  • [30]Krueger F, Kreck B, Franke A, Andrews SR: DNA methylome analysis using short bisulfite sequencing data. Nat Methods 2012, 9(2):145-151.
  • [31]Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B: RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 2012, 40(W1):W622-W627.
  • [32]Krueger F, Andrews SR: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27(11):1571-1572.
  • [33]Rohde C, Zhang Y, Reinhardt R, Jeltsch A: BISMA - Fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 2010, 11:230. BioMed Central Full Text
  文献评价指标  
  下载次数:65次 浏览次数:22次