期刊论文详细信息
Genome Biology
Mutation spectrum of Drosophila CNVs revealed by breakpoint sequencing
Andrew G Clark1  J Roman Arguello1  Margarida Cardoso-Moreira1 
[1] Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853-2703, USA
关键词: Filler DNA;    MMEJ;    Microhomology-mediated end-joining;    Alternative end-joining;    Replication-associated repair;    NHEJ;    Non-homologous end-joining;    SSA;    Single-strand annealing;    NAHR;    Non-allelic homologous-recombination;    CNVs;    Copy number variants;   
Others  :  866944
DOI  :  10.1186/gb-2012-13-12-r119
 received in 2012-05-31, accepted in 2012-12-22,  发布年份 2012
PDF
【 摘 要 】

Background

The detailed study of breakpoints associated with copy number variants (CNVs) can elucidate the mutational mechanisms that generate them and the comparison of breakpoints across species can highlight differences in genomic architecture that may lead to lineage-specific differences in patterns of CNVs. Here, we provide a detailed analysis of Drosophila CNV breakpoints and contrast it with similar analyses recently carried out for the human genome.

Results

By applying split-read methods to a total of 10x coverage of 454 shotgun sequence across nine lines of D. melanogaster and by re-examining a previously published dataset of CNVs detected using tiling arrays, we identified the precise breakpoints of more than 600 insertions, deletions, and duplications. Contrasting these CNVs with those found in humans showed that in both taxa CNV breakpoints fall into three classes: blunt breakpoints; simple breakpoints associated with microhomology; and breakpoints with additional nucleotides inserted/deleted and no microhomology. In both taxa CNV breakpoints are enriched with non-B DNA sequence structures, which may impair DNA replication and/or repair. However, in contrast to human genomes, non-allelic homologous-recombination (NAHR) plays a negligible role in CNV formation in Drosophila. In flies, non-homologous repair mechanisms are responsible for simple, recurrent, and complex CNVs, including insertions of de novo sequence as large as 60 bp.

Conclusions

Humans and Drosophila differ considerably in the importance of homology-based mechanisms for the formation of CNVs, likely as a consequence of the differences in the abundance and distribution of both segmental duplications and transposable elements between the two genomes.

【 授权许可】

   
2013 Cardoso-Moreira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140728073159644.pdf 895KB PDF download
23KB Image download
31KB Image download
30KB Image download
23KB Image download
【 图 表 】

【 参考文献 】
  • [1]Zhang F, Gu W, Hurles ME, Lupski JR: Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009, 10:451-481.
  • [2]Malhotra D, Sebat J: CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012, 148:1223-1241.
  • [3]Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC: Diet and the evolution of human amylase gene copy number variation. Nat Genet 2007, 39:1256-1260.
  • [4]Cardoso-Moreira M, Long M: The origin and evolution of new genes. Methods Mol Biol 2012, 856:161-186.
  • [5]Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M: Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 2008, 320:1629-1631.
  • [6]Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME: Origins and functional impact of copy number variation in the human genome. Nature 2010, 464:704-712.
  • [7]Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, Cáceres AM, Iafrate AJ, Tyler-Smith C, Scherer SW, Eichler EE, Stone AC, Lee C: Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA 2006, 103:8006-8011.
  • [8]Cooper GM, Nickerson DA, Eichler EE: Mutational and selective effects on copy-number variants in the human genome. Nat Genet 2007, 39:S22-29.
  • [9]Cardoso-Moreira MM, Long M: Mutational bias shaping fly copy number variation: implications for genome evolution. Trends Genet 2010, 26:243-247.
  • [10]Cardoso-Moreira M, Emerson JJ, Clark AG, Long M: Drosophila duplication hotspots are associated with late-replicating regions of the genome. PLoS Genet 2011, 7:e1002340.
  • [11]Gu W, Zhang F, Lupski JR: Mechanisms for human genomic rearrangements. Pathogenetics 2008, 1:4. BioMed Central Full Text
  • [12]Hastings PJ, Lupski JR, Rosenberg SM, Ira G: Mechanisms of change in gene copy number. Nat Rev Genet 2009, 10:551-564.
  • [13]McVey M, Lee SE: MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 2008, 24:529-538.
  • [14]Zhang F, Carvalho CM, Lupski JR: Complex human chromosomal and genomic rearrangements. Trends Genet 2009, 25:298-307.
  • [15]Quinlan AR, Hall IM: Characterizing complex structural variation in germline and somatic genomes. Trends Genet 2012, 28:43-53.
  • [16]Lee JA, Carvalho CM, Lupski JR: A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007, 131:1235-1247.
  • [17]Hastings PJ, Ira G, Lupski JR: A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 2009, 5:e1000327.
  • [18]Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN: Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 2003, 21:28-44.
  • [19]Conrad DF, Bird C, Blackburne B, Lindsay S, Mamanova L, Lee C, Turner DJ, Hurles ME: Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet 2010, 42:385-4291.
  • [20]Kidd JM, Graves T, Newman TL, Fulton R, Hayden HS, Malig M, Kallicki J, Kaul R, Wilson RK, Eichler EE: A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 2010, 143:837-847.
  • [21]Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, Lam HY, Leng J, Li R, Li Y, Lin CY, Luo R, 1000 Genomes Project, et al.: Mapping copy number variation by population-scale genome sequencing. Nature 2011, 470:59-65.
  • [22]Lam HY, Mu XJ, Stütz AM, Tanzer A, Cayting PD, Snyder M, Kim PM, Korbel JO, Gerstein MB: Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library. Nat Biotechnol 2010, 28:47-55.
  • [23]Quinlan AR, Clark RA, Sokolova S, Leibowitz ML, Zhang Y, Hurles ME, Mell JC, Hall IM: Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res 2010, 20:623-635.
  • [24]Dopman EB, Hartl DL: A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci USA 2007, 104:19920-19925.
  • [25]Cridland JM, Thornton KR: Validation of rearrangement break points identified by paired-end sequencing in natural populations of Drosophila melanogaster. Genome Biol Evol 2010, 2:83-101.
  • [26]Fiston-Lavier AS, Anxolabéhère D, Quesneville H: A model of segmental duplication formation in Drosophila melanogaster. Genome Res 2007, 17:1458-1470.
  • [27]Bergman CM, Quesneville H, Anxolabéhère D, Ashburner M: Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol 2006, 7:R112. BioMed Central Full Text
  • [28]Sackton TB, Kulathinal RJ, Bergman CM, Quinlan AR, Dopman EB, Carneiro M, Marth GT, Hartl DL, Clark AG: Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome Biol Evol 2009, 1:449-465.
  • [29]Mosaik Aligner [http://code.google.com/p/mosaik-aligner/] webcite
  • [30]Kent WJ: BLAT - The BLAST-like alignment tool. Genome Res 2002, 4:656-664.
  • [31]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: ClustalW and ClustalX version 2. Bioinformatics 2007, 23:2947-2948.
  • [32]Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R: A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010, 38:W695-699.
  • [33]Ducau J, Bregliano JC, de La Roche Saint-André C: Gamma-irradiation stimulates homology-directed DNA double-strand break repair in Drosophila embryo. Mutat Res 2000, 460:69-80.
  • [34]Rong YS, Golic KG: The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 2003, 165:1831-1842.
  • [35]Gorbunova V, Levy AA: Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 1997, 25:4650-4657.
  • [36]Messer PW, Arndt PF: The majority of recent short DNA insertions in the human genome are tandem duplications. Mol Biol Evol 2007, 24:1190-1197.
  • [37]Preston CR, Engels W, Flores C: Efficient repair of DNA breaks in Drosophila: evidence for single-strand annealing and competition with other repair pathways. Genetics 2002, 161:711-720.
  • [38]Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM: On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011, 32:1075-1099.
  • [39]Wang G, Vasquez KM: Non-B DNA structure-induced genetic instability. Mutat Res 2006, 598:103-119.
  • [40]Cer RZ, Bruce KH, Mudunuri US, Yi M, Volfovsky N, Luke BT, Bacolla A, Collins JR, Stephens RM: Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res 2011, 39:D383-391.
  • [41]Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW: De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet 2012, 8:e1002981.
  • [42]Chan SH, Yu AM, McVey M: Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 2010, 6:e1001005.
  • [43]Yu AM, McVey M: Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 2010, 38:5706-5717.
  • [44]Onishi-Seebacher M, Korbel JO: Challenges in studying genomic structural variant formation mechanisms: the short-read dilemma and beyond. Bioessays 2011, 33:840-850.
  • [45]Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE: An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 2006, 16:1182-1190.
  • [46]Mardis ER: A decade's perspective on DNA sequencing technology. Nature 2011, 470:198-203.
  • [47]McQuilton P, St Pierre SE, Thurmond J, FlyBase Consortium: FlyBase 101--the basics of navigating FlyBase. Nucleic Acids Res 2012, 40:D706-714.
  • [48]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [49]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
  • [50]Smit AFA, Hubley R, Green P: RepeatMasker Open-3.0. [http://www.repeatmasker.org] webcite 1996.
  • [51]R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. [http://www.R-project.org/] webcite 2008.
  文献评价指标  
  下载次数:10次 浏览次数:5次