期刊论文详细信息
Fluids and Barriers of the CNS
A new look at cerebrospinal fluid circulation
Petra Klinge1  John Morrison1  Edward Stopa1  Thomas Brinker1 
[1] Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
关键词: Virchow Robin space;    Blood brain barrier;    Aquaporin;    Astrocyte;    Cerebrospinal fluid circulation;   
Others  :  813270
DOI  :  10.1186/2045-8118-11-10
 received in 2014-01-23, accepted in 2014-04-18,  发布年份 2014
PDF
【 摘 要 】

According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.

【 授权许可】

   
2014 Brinker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710000534561.pdf 818KB PDF download
Figure 3. 46KB Image download
Figure 2. 61KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Milhorat TH: The third circulation revisited. J Neurosurg 1975, 42:628-645.
  • [2]McComb JG: Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 1983, 59:369-383.
  • [3]Davson H: Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev 1966, 238-259.
  • [4]Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 2008, 5:10. BioMed Central Full Text
  • [5]Pardridge WM: Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 2011, 8:7. BioMed Central Full Text
  • [6]Hassin GB: The cerebrospinal fluid pathways (a critical note). J Neuropathol Exp Neurol 1947, 6:172-176.
  • [7]Bateman GA, Brown KM: The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Child’s Nerv Syst 2012, 28:55-63.
  • [8]Greitz D: Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 1993, 386:1-23.
  • [9]Bulat M, Klarica M: Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 2011, 65:99-112.
  • [10]Oreskovic D, Klarica M: The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 2010, 64:241-262.
  • [11]Cserr HF: Physiology of the choroid plexus. Physiol Rev 1971, 51:273-311.
  • [12]Becker NH, Novikoff AB, Zimmerman HM: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem 1967, 15:160-165.
  • [13]Dandy WE, Blackfan KD: An experimental and clinical study of internal hydrocephalus. JAMA 1913, 61:2216-2217.
  • [14]Dandy WE: Experimental hydrocephalus. Ann Surg 1919, 70:129-142.
  • [15]Hassin GB, Oldberg E, Tinsley M: Changes in the brain in plexectomized dogs with commentson the cerebrospinal fluid. Arch Neurol Psychiatry 1937, 38:1224-1239.
  • [16]Oreskovic D, Klarica M, Vukic M: The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion? Neurosci Lett 2002, 327:103-106.
  • [17]Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 1974, 139:505-508.
  • [18]Welch K: Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol 1963, 205:617-624.
  • [19]Pollay M: Formation of cerebrospinal fluid. Relation of studies of isolated choroid plexus to the standing gradient hypothesis. J Neurosurg 1975, 42:665-673.
  • [20]Pollay M, Stevens A, Estrada E, Kaplan R: Extracorporeal perfusion of choroid plexus. J Appl Physiol 1972, 32:612-617.
  • [21]Ames A 3rd, Sakanoue M, Endo S: Na, K, Ca, Mg, and C1 concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 1964, 27:672-681.
  • [22]de Rougemont , Ames A III, Nesbett FB, Hofmann HF: Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 1960, 23:485-495.
  • [23]Bering EA Jr: Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Physiol 1959, 197:825-828.
  • [24]Bering EA Jr, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 1963, 20:1050-1063.
  • [25]Weed LH: The development of the cerebrospinal spaces in pig and in man. Contrib Embryol Carnegie Inst 1917, 5:1-116.
  • [26]Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 1967, 213:1031-1038.
  • [27]Sonnenberg H, Solomon S, Frazier DT: Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med 1967, 124:1316-1320.
  • [28]Bradbury MW: Physiopathology of the blood–brain barrier. Adv Exp Med Biol 1976, 69:507-516.
  • [29]Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 2004, 45:545-552.
  • [30]Cserr HF: Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann NY Acad Sci 1988, 529:9-20.
  • [31]Davson H, Domer FR, Hollingsworth JR: The mechanism of drainage of the cerebrospinal fluid. Brain 1973, 96:329-336.
  • [32]Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008, 5:10. BioMed Central Full Text
  • [33]Davson H, Welch K, Segal MB: Physiology and pathophysiology of the cerebrospinal fluid. Edinburgh London Melbourne and New York: Churchill Livingstone; 1987.
  • [34]Key EAH, Retzius MG: Studien in der Anatomie des Nervensystems und des Bindegewebes. Stockholm: Samson and Wallin; 1875.
  • [35]Weed LH: Studies on cerebro-spinal fluid. No. II : the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 1914, 31:21-49.
  • [36]Weed LH: Studies on cerebro-spinal fluid. No. III : the pathways of escape from the subarachnoid spaces with particular reference to the Arachnoid Villi. J Med Res 1914, 31:51-91.
  • [37]Weed LH: Studies on cerebro-spinal fluid. No. IV : the dual source of cerebro-spinal fluid. J Med Res 1914, 31:93-118. 111
  • [38]Tripathi RC: The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res 1977, 25(Suppl):65-116.
  • [39]Levine JE, Povlishock JT, Becker DP: The morphological correlates of primate cerebrospinal fluid absorption. Brain Res 1982, 241:31-41.
  • [40]Welch K, Pollay M: Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 1961, 201:651-654.
  • [41]Courtice FC, Simmonds WJ: The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 1951, 29:255-263.
  • [42]Boulton M, Flessner M, Armstrong D, Hay J, Johnston M: Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 1998, 274:R88-R96.
  • [43]Bradbury MW, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 1981, 240:F329-F336.
  • [44]Brinker T, Ludemann W, Berens V, Samii M: Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol(Berl) 1997, 94:493-498.
  • [45]Weller RO, Galea I, Carare RO, Minagar A: Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 2010, 17:295-306.
  • [46]Klarica M, Mise B, Vladic A, Rados M, Oreskovic D: "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus. Neuroscience 2013, 248C:278-289.
  • [47]Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol 1975, 13:247-332.
  • [48]Masserman JH: Cerebrospinal hydrodynamics: IV. Clinical experimental studies. Arch Neurol Psychiat 1934, 32:523-553.
  • [49]Heisey SR, Held D, Pappenheimer JR: Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 1962, 203:775-781.
  • [50]Fishman RA: The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 2002, 58:1866. author reply 1866
  • [51]Ekstedt J: CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 1978, 41:345-353.
  • [52]Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP: The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg 1966, 25:430-436.
  • [53]Cutler RW, Page L, Galicich J, Watters GV: Formation and absorption of cerebrospinal fluid in man. Brain 1968, 91:707-720.
  • [54]Lorenzo AV, Page LK, Watters GV: Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 1970, 93:679-692.
  • [55]Rottenberg DA, Deck MD, Allen JC: Metrizamide washout as a measure of CSF bulk flow. Neuroradiology 1978, 16:203-206.
  • [56]Rottenberg DA, Howieson J, Deck MD: The rate of CSF formation in man: preliminary observations on metrizamide washout as a measure of CSF bulk flow. Ann Neurol 1977, 2:503-510.
  • [57]Cushing H: Studies in Intracranial physiology & surgery: the third circulation, the Hypophysis, the Gliomas : the Cameron prize lectures delivered at the University of Edinburgh, October 19–22, 1925. Oxford; 1926.
  • [58]Black PM: Harvey cushing at the Peter Bent Brigham hospital. Neurosurgery 1999, 45:990-1001.
  • [59]Woollam DH, Millen JW: The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat 1955, 89:193-200.
  • [60]Jones EG: On the mode of entry of blood vessels into the cerebral cortex. J Anat 1970, 106:507-520.
  • [61]Cserr HF, Depasquale M, Patlak CS, Pullen RG: Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann NY Acad Sci 1986, 481:123-134.
  • [62]Bechmann I, Kwidzinski E, Kovac AD, Simburger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R: Turnover of rat brain perivascular cells. Exp Neurol 2001, 168:242-249.
  • [63]Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R: Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 2001, 14:1651-1658.
  • [64]Krueger M, Bechmann I: CNS pericytes: concepts, misconceptions, and a way out. Glia 2010, 58:1-10.
  • [65]Krahn V: The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl) 1982, 164:257-263.
  • [66]Ge S, Song L, Pachter JS: Where is the blood–brain barrier … really? J Neurosci Res 2005, 79:421-427.
  • [67]Bechmann I, Galea I, Perry VH: What is the blood–brain barrier (not)? Trends Immunol 2007, 28:5-11.
  • [68]Zhang ET, Inman CB, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 1990, 170:111-123.
  • [69]Krisch B: Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of new-world monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res 1988, 251:621-631.
  • [70]Krisch B, Leonhardt H, Oksche A: Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 1984, 238:459-474.
  • [71]Ichimura T, Fraser PA, Cserr HF: Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 1991, 545:103-113.
  • [72]Thal DR: The pre-capillary segment of the blood–brain barrier and its relation to perivascular drainage in Alzheimer’s disease and small vessel disease. Sci World J 2009, 9:557-563.
  • [73]Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 1985, 326:47-63.
  • [74]Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 1992, 83:233-239.
  • [75]Barshes N, Demopoulos A, Engelhard HH: Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res 2005, 125:1-16.
  • [76]Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 1986, 65:316-325.
  • [77]Alcolado R, Weller RO, Parrish EP, Garrod D: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropath Appl Neurobiol 1988, 14:1-17.
  • [78]Brightman MW, Palay SL: The fine structure of Ependyma in the brain of the rat. J Cell Biol 1963, 19:415-439.
  • [79]Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn M, Noble C, Park J, Bankiewicz K: The "Perivascular Pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 2006, 14:69-78.
  • [80]Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 1984, 246:F835-F844.
  • [81]Weller RO, Kida S, Zhang ET: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man. Brain Pathol 1992, 2:277-284.
  • [82]Weller RO, Djuanda E, Yow HY, Carare RO: Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 2009, 117:1-14.
  • [83]Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO: Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 2008, 34:131-144.
  • [84]Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 2003, 29:106-117.
  • [85]Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013, 39:593-611.
  • [86]Carare RO, Hawkes CA, Weller RO: Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain. Behav Immun 2014, 36:9-14.
  • [87]Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO: Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 2011, 121:431-443.
  • [88]Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 2013, 123:1299-1309.
  • [89]Davson H, Kleeman CR, Levin E: The blood brain barrier. In Drugs and Membranes, Volume 4. Edited by Hoghen AM, Lindgren P. Oxford: Pergamon Press; 1963:71-94.
  • [90]Patlak CS, Fenstermacher JD: Measurements of dog blood–brain transfer constants by ventriculocisternal perfusion. Am J Physiol 1975, 229:877-884.
  • [91]Nicholson C, Phillips JM: Diffusion of anions and cations in the extracellular micro-environment of the brain [proceedings]. J Physiol 1979, 296:66P.
  • [92]Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev 2008, 88:1277-1340.
  • [93]Wolak DJ, Thorne RG: Diffusion of macromolecules in the brain: implications for drug delivery. Molec Pharmaceutics 2013, 10:1492-1504.
  • [94]Cserr HF, Harling-Berg CJ, Knopf PM: Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992, 2:269-276.
  • [95]Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 2012, 4:147ra111.
  • [96]MacAulay N, Zeuthen T: Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 2010, 168:941-956.
  • [97]Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013, 14:265-277.
  • [98]Tait MJ, Saadoun S, Bell BA, Papadopoulos MC: Water movements in the brain: role of aquaporins. Trends Neurosci 2008, 31:37-43.
  • [99]Bering EA Jr: Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg 1952, 9:275-287.
  • [100]Bateman GA: Extending the hydrodynamic hypothesis in chronic hydrocephalus. Neurosurg Rev 2005, 28:333-334.
  • [101]Mamonov AB, Coalson RD, Zeidel ML, Mathai JC: Water and deuterium oxide permeability through aquaporin 1: MD predictions and experimental verification. J Gen Physiol 2007, 130:111-116.
  • [102]Ibata K, Takimoto S, Morisaku T, Miyawaki A, Yasui M: Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy. Biophysical J 2011, 101:2277-2283.
  • [103]Johanson CE, Stopa EG, McMillan PN: The blood-cerebrospinal fluid barrier: structure and functional significance. Meth Molec Biol 2011, 686:101-131.
  • [104]Praetorius J, Nielsen S: Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 2006, 291:C59-C67.
  • [105]Brown PD, Davies SL, Speake T, Millar ID: Molecular mechanisms of cerebrospinal fluid production. Neuroscience 2004, 129:957-970.
  • [106]Owler BK, Pitham T, Wang D: Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res 2010, 7:15. BioMed Central Full Text
  • [107]Bradbury MWB, Cserr H: Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In Experimental Biology of the lymphatic circulation. Edited by Johnston MG. Amsterdam: Elsevier Science Publishers; 1985.
  • [108]Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis 2010, 37:13-25.
  • [109]Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O'Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR: Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011, 12:169-182.
  • [110]Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013, 36:437-449.
  • [111]Neuwelt EA: Mechanisms of disease: the blood–brain barrier. Neurosurgery 2004, 54:131-142.
  • [112]Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP: The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 2010, 58:1094-1103.
  • [113]Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 1998, 95:11981-11986.
  • [114]Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997, 17:171-180.
  • [115]Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare O, Laake P, Klungland A, Thoren AE, Burkhardt JM, Ottersen OP, Nagelhus EA: Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A 2011, 108:17815-17820.
  • [116]Zelenina M: Regulation of brain aquaporins. Neurochem Int 2010, 57:468-488.
  • [117]Day RE, Kitchen P, Owen D, Bland C, Marshall L, Conner AC, Bill RM, Conner MT: Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta 2014, 1840(5):1492-1506.
  • [118]Badaut J, Lasbennes F, Magistretti PJ, Regli L: Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002, 22:367-378.
  • [119]Agre P: The aquaporin water channels. Proc Am Thorac Soc 2006, 3:5-13.
  • [120]Benfenati V, Ferroni S: Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience 2010, 168:926-940.
  • [121]Chai RC, Jiang JH, Kwan Wong AY, Jiang F, Gao K, Vatcher G, Hoi Yu AC: AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia 2013, 61:1748-1765.
  • [122]Igarashi H, Tsujita M, Kwee IL, Nakada T: Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice. Neuroreport 2014, 25(1):39-43.
  • [123]Suzuki Y, Nakamura Y, Yamada K, Huber VJ, Tsujita M, Nakada T: Aquaporin-4 positron emission tomography imaging of the human brain: first report. J Neuroimaging 2013, 23:219-223.
  • [124]Yukutake Y, Yasui M: Regulation of water permeability through aquaporin-4. Neuroscience 2010, 168:885-891.
  • [125]Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC: Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 2006, 1758:1085-1093.
  • [126]Oshio K, Binder DK, Bollen A, Verkman AS, Berger MS, Manley GT: Aquaporin-1 expression in human glial tumors suggests a potential novel therapeutic target for tumor-associated edema. Acta Neurochir Suppl 2003, 86:499-502.
  • [127]Oshio K, Binder DK, Liang Y, Bollen A, Feuerstein B, Berger MS, Manley GT: Expression of the aquaporin-1 water channel in human glial tumors. Neurosurgery 2005, 56:375-381. discussion 375–381
  • [128]Igarashi H, Tsujita M, Kwee IL, Nakada T: Inhibition of aquaporin-4 significantly increases regional cerebral blood flow. Neuroreport 2013, 24:324-328.
  • [129]Cserr HF: Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc 1974, 33:2075-2078.
  • [130]Yang M, Gao F, Liu H, Yu WH, He GQ, Zhuo F, Qiu GP, Sun SQ: Immunolocalization of aquaporins in rat brain. Anat Histol Embryol 2011, 40:299-306.
  • [131]Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME: Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 2001, 98:14108-14113.
  • [132]Connors NC, Kofuji P: Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia 2006, 53:124-131.
  • [133]Amiry-Moghaddam M, Frydenlund DS, Ottersen OP: Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 2004, 129:999-1010.
  • [134]Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stodkilde-Jorgensen H, Sulyok E, Doczi T, Neely JD, Agre P, Frokiaer J, Nielsen S: Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci U S A 2002, 99:13131-13136.
  • [135]Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP: Immunogold evidence suggests that coupling of K + siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 1999, 26:47-54.
  • [136]Nagelhus EA, Mathiisen TM, Ottersen OP: Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 2004, 129:905-913.
  • [137]Verkman AS: Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol 2009, 190:359-381.
  • [138]Zador Z, Stiver S, Wang V, Manley GT: Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 2009, 190:159-170.
  • [139]Bloch O, Auguste KI, Manley GT, Verkman AS: Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 2006, 26:1527-1537.
  • [140]Solenov E, Watanabe H, Manley GT, Verkman AS: Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 2004, 286:C426-432.
  • [141]Papadopoulos MC, Verkman AS: Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 2005, 280:13906-13912.
  • [142]Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS: Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000, 6:159-163.
  • [143]Saadoun S, Tait MJ, Reza A, Davies DC, Bell BA, Verkman AS, Papadopoulos MC: AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology. Neuroscience 2009, 161:764-772.
  • [144]Li X, Kong H, Wu W, Xiao M, Sun X, Hu G: Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience 2009, 162:67-77.
  • [145]Bulat M, Lupret V, Oreskovic D, Klarica M: Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol 2008, 32:43-50.
  • [146]O'Donnell M: NMR blood flow imaging using multiecho, phase contrast sequences. Med Phys 1985, 12:59-64.
  • [147]Bradley WG Jr, Kortman KE, Burgoyne B: Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology 1986, 159:611-616.
  • [148]Feinberg DA, Mark AS: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 1987, 163:793-799.
  • [149]Nitz WR, Bradley WG Jr, Watanabe AS, Lee RR, Burgoyne B, O'Sullivan RM, Herbst MD: Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 1992, 183:395-405.
  • [150]Bradley WG Jr, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P: Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 1996, 198:523-529.
  • [151]Yoshida K, Takahashi H, Saijo M, Ueguchi T, Tanaka H, Fujita N, Murase K: Phase-contrast MR studies of CSF flow rate in the cerebral aqueduct and cervical subarachnoid space with correlation-based segmentation. Magn Reson Med Sci 2009, 8:91-100.
  • [152]Penn RD, Basati S, Sweetman B, Guo X, Linninger A: Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 2011, 115:159-164.
  • [153]Piechnik SK, Summers PE, Jezzard P, Byrne JV: Magnetic resonance measurement of blood and CSF flow rates with phase contrast–normal values, repeatability and CO2 reactivity. Acta Neurochir Suppl 2008, 102:263-270.
  • [154]Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen O: Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology 1994, 36:210-215.
  • [155]Huang TY, Chung HW, Chen MY, Giiang LH, Chin SC, Lee CS, Chen CY, Liu YJ: Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology 2004, 233:603-608.
  • [156]Kim DS, Choi JU, Huh R, Yun PH, Kim DI: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child’s Nerv Syst 1999, 15:461-467.
  • [157]Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A: Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab 2011, 31:819-831.
  • [158]Chikly B, Quaghebeur J: Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther 2013, 17:344-354.
  • [159]Greitz D, Greitz T, Hindmarsh T: We need a new understanding of the reabsorption of cerebrospinal fluid–II. Acta Paediatr 1997, 86:1148.
  • [160]Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M: New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 2009, 158:1397-1405.
  • [161]Nedergaard M: Neuroscience. Garbage truck of the brain. Science 2013, 340:1529-1530.
  • [162]Foldi M, Csillik B, Zoltan OT: Lymphatic drainage of the brain. Experientia 1968, 24:1283-1287.
  • [163]Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M: Sleep drives metabolite clearance from the adult brain. Science 2013, 342:373-377.
  • [164]Greitz D, Hannerz J: A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR 1996, 17:431-438.
  • [165]Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 2013, 11:107. BioMed Central Full Text
  文献评价指标  
  下载次数:0次 浏览次数:16次