| Journal of Molecular Psychiatry | |
| Mitochondrial complex I and III gene mRNA levels in schizophrenia, and their relationship with clinical features | |
| Özcan Uzun1  Hatice Akar3  Mehmet Ak5  Salih Kozan3  Murat Erdem1  Abdullah Bolu2  Deniz Torun3  Süleyman Akarsu4  | |
| [1] Department of Psychiatry, Gülhane Military Medical Faculty, Ankara, Turkey;Aircrew’s Health Research and Training Center, Eskişehir, Turkey;Department of Medical Genetics, Gülhane Military Medical Faculty, Ankara, Turkey;Department of Psychiatry, Aksaz Military Hospital, Marmaris, Muğla, Turkey;Department of Psychiatry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey | |
| 关键词: mRNA levels; Psychotic symptomatology; Electron transport chain; Mitochondrial dysfunction; Schizophrenia; | |
| Others : 1133179 DOI : 10.1186/s40303-014-0006-9 |
|
| received in 2014-06-27, accepted in 2014-11-24, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
The etiology of schizophrenia is not precisely known; however, mitochondrial function and cerebral energy metabolism abnormalities were determined to be possible factors associated with the etiology of schizophrenia. Impaired mitochondrial function negatively affects neuronal plasticity, and can cause cognitive deficits and behavioral abnormalities observed during the clinical course of schizophrenia. The present study aimed to investigate the relationship between the clinical features of schizophrenia, and mitochondrial complex activation, based on measurement of mRNA levels in the NDUFV1, NDUFV2, NDUFS1, and UQCR10 genes involved in the peripheral mitochondrial complex.
Methods
The study included 138 schizophrenia patients and 42 healthy controls. The schizophrenia group was divided into a chronic schizophrenia subgroup (n = 84) and a first-episode schizophrenia subgroup (n = 54). The symptoms profile and severity of disorder were evaluated using the Scale for the Assessment of Negative Symptoms (SANS), Scale for the Assessment of Positive Symptoms (SAPS), and Brief Psychiatric Rating Scale (BPRS).
Results
The level of mRNA expression of NDUFV1, NDUFV2, and NDUFS1 was significantly higher in the schizophrenia group than in the control group. The mRNA level of NDUFV2 was positively correlated with BPRS and SAPS scores in the first-episode schizophrenia subgroup.
Conclusion
The findings showed that there was a positive correlation between gene mRNA levels and psychotic symptomatology, especially positive symptoms. Our results suggest that mRNA levels of the NDUFV1, NUDFV2, and NDUFS1 genes of complex I of the mitochondrial electron transport chain might become a possible peripheral marker for the diagnosis of schizophrenia.
【 授权许可】
2015 Akarsu et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150304113414262.pdf | 390KB |
【 参考文献 】
- [1]Buchsbaum MS, Buchsbaum BR, Hazlet EA, Haznedar MM, Newmark R, Tang CY, Hof PR: Relative glucose metabolic rate higher in white matter in patients with schizophrenia. Am J Psychiatr 2007, 164:1072-1081.
- [2]Iwamoto K, Bundo M, Kato T: Altered expression of mitochondria related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005, 14:241-253.
- [3]Ben Shachar D, Laifenfeld D: Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 2004, 59:273-296.
- [4]Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S: Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004, 9:684-697.
- [5]Dror N, Klein E, Karry R, Sheinkman A, Kirsh Z, Mazor M: State dependent alterations in mitochondrial complex I activity in platelets: a potential peripheral marker for schizophrenia. Mol Psychiatry 2002, 7:995-1001.
- [6]Ben Shachar D, Nadri C, Karry R, Agam G: Mitochondrial Complex I Subunits are Altered in Rats with Neonatal Ventral Hippocampal Damage but not in Rats Exposed to Oxygen Restriction at Neonatal Age. J Mol Neurosci 2009, 38:143-151.
- [7]Ben-Shachar D, Bonne O, Chisin R, Klein E, Lester H, Aharon-Peretz J, Yona I, Freedman N: Cerebral glucose utilization and platelet mitochondrial complex I activity in schizophrenia: A FDG-PET study. Prog Neuro-Psychopharmacol Biol Psychiatry 2007, 31:807-813.
- [8]Ben Shachar D, Karry R: Neuroanatomical pattern of mitochondrial Complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLOS ONE 2008, 3:e3676.
- [9]Karry R, Klein E, Ben Shachar D: Mitochondrial Complex I Subunits Expression Is Altered in Schizophrenia: A Postmortem Study. Biol Psychiatry 2004, 55:676-684.
- [10]Ben Shachar D, Zuk R, Gazawi H, Reshef A, Sheinkman A, Klein E: Increased mitochondrial complex I activity in platelets of schizophrenic patients. Int J Dev Neurosci 1999, 2:245-253.
- [11]American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. Four edition. American Psychiatric Press, Washington DC; 1994.
- [12]First MB, Spitzer RL, Gibbon M, Williams JBW: Structured Cinical Interwiew for DSM –IV clinical version (SCID –I/CV). American Psychiatric Press, Washington DC; 1996.
- [13]Andreasen NC: The Scale for the Assessment of Negative Symptoms (SANS). University of Iowa, Iowa City, IA; 1983.
- [14]Andreasen NC: The Scale for the Assessment of Positive Symptoms (SAPS) University of Iowa; Iowa City, IA. 1984.
- [15]Overall JE, Gorham DR: The brief psychiatric rating scale. Psychlogical Rep 1962, 10:799-812.
- [16]Taurines R, Thome J, Duvigneau JC, Forbes-Robertson S, Yang L, Klampfl K, Romanos J, Müller S, Gerlach M, Mehler-Wex C: Expression analyses of the mitochondrial complex I 75-kDa subunit in early onset schizophrenia and autism spectrum disorder: increased levels as a potential biomarker for early onset schizophrenia. Eur Child Adolesc Psychiat 2010, 19:441-448.
- [17]Mehler-Wex C, Duvigneau JC, Hartl RT, Ben-Shachar D, Warnke A, Gerlach M: Increased mRNA levels of the mitochondrial complex I 75-kDa subunit, A potential peripheral marker of early onset schizophrenia? Eur Child Adolesc Psychiat 2006, 15:504-507.
- [18]Weeber EJ, Levy M, Sampson MJ, Anflous K, Armstrong DL, Brown SE, Sweatt JD, Craigen WJ: The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 2002, 277:18891-18897.
- [19]Calabresi P, Gubellini P, Picconi B, Centonze D, Pisani A, Bonsi P, Greengard P, Hipskind RA, Borrelli E, Bernardi G: Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 2001, 21:5110-5120.
- [20]Albensi BC, Sullivan PG, Thompson MB, Scheff SW, Mattson MP: Cyclosporin ameliorates traumatic brain-injury-induced alterations of hippocampal synaptic plasticity. Exp Neurol 2000, 162:385-389.
- [21]Mattson MP, La Ferla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD: Calcium signaling in the ER: Its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000, 23:222-229.
- [22]Wei YH, Lu CY, Lee HC, Pang CY, Ma YS: Oxidative damage and mutation to mitochondrial DNA and age dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci 1998, 854:155-170.
- [23]Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P, Yaffee M: Oxidants in mitochondria: from physiology to disease. Biochim Biophys Acta 1995, 1271:67-74.
- [24]Hartmann N, Reichwald K, Wittig I, Dröse S, Schmeisser S, Lück C, Hahn C, Graf M, Gausmann U, Terzibasi E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C: Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell 2011, 10:824-831.
- [25]Hwang AB, Jeong DE, Lee SJ: Mitochondria and organismal longevity. Curr Genomics 2012, 13:519-532.
- [26]O'Toole JF, Patel HV, Naples CJ, Fujioka H, Hoppel CL: Decreased cytochrome c mediates an age-related decline of oxidative phosphorylation in rat kidney mitochondria. Biochem J 2010, 427:105-112.
- [27]Balijepalli S, Kenchappa RS, Boyd MR, Ravindfanath V: Protein thiol oxidation by haloperidol results in inhibition of mitochondrial complex I in brain regions: comparison with atypical antipsychotics. Neurochem Int 2001, 38:425-435.
- [28]Balijepalli S, Boyd MR, Ravindranath V: Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropsychopharmacology 1999, 38:567-577.
- [29]Barrientos A, Marín C, Miró O, Casademont J, Gómez M, Nunes V, Tolosa E, Urbano-Márquez A, Cardellach F: Biochemical and molecular effects of chronic haloperidol administration on brain and muscle mitochondria of rats. J Neurosci Res 1998, 53:475-481.
- [30]Prince JA, Yassin M, Oreland L: A histochemical demonstration of altered cytochrome c oxidase activity in the rat brain by neuroleptics. Eur Neuropsychopharmacol 1998, 8:1-6.
- [31]Maurer I, Moller HJ: Inhibition of complex I by neuroleptics in normal human brain cortex paralles the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem 1997, 174:255-259.
- [32]Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD: Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol 1993, 33:512-517.
PDF