期刊论文详细信息
Journal of Neuroinflammation
Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure
Ana Raquel Santiago6  António Francisco Ambrósio3  Rodrigo A. Cunha4  Francisco Q. Gonçalves5  Raquel Boia2  Filipe Elvas1  Maria H. Madeira2 
[1] Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, 3004-548, Portugal;CNC.IBILI, University of Coimbra, Coimbra, 3004-517, Portugal;Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra, 3000-548, Portugal;Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal;CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal;IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, 3004-548, Portugal
关键词: Glaucoma;    Neuroprotection;    Adenosine;    Microglia;   
Others  :  1221458
DOI  :  10.1186/s12974-015-0333-5
 received in 2015-01-26, accepted in 2015-05-27,  发布年份 2015
PDF
【 摘 要 】

Background

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a degenerative disease characterized by the loss of retinal ganglion cells (RGCs). There is clinical and experimental evidence that neuroinflammation is involved in the pathogenesis of glaucoma. Since the blockade of adenosine A2A receptor (A2AR) confers robust neuroprotection and controls microglia reactivity in the brain, we now investigated the ability of A2AR blockade to control the reactivity of microglia and neuroinflammation as well as RGC loss in retinal organotypic cultures exposed to elevated hydrostatic pressure (EHP) or lipopolysaccharide (LPS).

Methods

Retinal organotypic cultures were either incubated with LPS (3 μg/mL), to elicit a pro-inflammatory response, or exposed to EHP (+70 mmHg), to mimic increased IOP, for 4 or 24 h, in the presence or absence of the A2AR antagonist SCH 58261 (50 nM). A2AR expression, microglial reactivity and neuroinflammatory response were evaluated by immunohistochemistry, quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). RGC loss was assessed by immunohistochemistry. In order to investigate the contribution of pro-inflammatory mediators to RGC loss, the organotypic retinal cultures were incubated with rabbit anti-tumour necrosis factor (TNF) (2 μg/mL) and goat anti-interleukin-1β (IL-1β) (1 μg/mL) antibodies.

Results

We report that the A2AR antagonist (SCH 58261) prevented microglia reactivity, increase in pro-inflammatory mediators as well as RGC loss upon exposure to either LPS or EHP. Additionally, neutralization of TNF and IL-1β prevented RGC loss induced by LPS or EHP.

Conclusions

This work demonstrates that A2AR blockade confers neuroprotection to RGCs by controlling microglia-mediated retinal neuroinflammation and prompts the hypothesis that A2AR antagonists may be a novel therapeutic option to manage glaucomatous disorders.

【 授权许可】

   
2015 Madeira et al.

【 预 览 】
附件列表
Files Size Format View
20150731102728747.pdf 2708KB PDF download
Fig. 5. 108KB Image download
Fig. 4. 22KB Image download
Fig. 3. 112KB Image download
Fig. 2. 135KB Image download
Fig. 1. 75KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al.: Global data on visual impairment in the year 2002. Bull World Health Org. 2004, 82:844-51.
  • [2]Caprioli J. Glaucoma: a disease of early cellular senescence. Invest Ophthalmol Vis Sci. 2013;54(14):ORSF60–7. doi:10.1167/iovs.13-12716.
  • [3]Cordeiro MF, Levin LA: Clinical evidence for neuroprotection in glaucoma. Am J Ophthalmol 2011, 152(5):715-6.
  • [4]Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, et al.: Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 2011, 121(4):1429-44.
  • [5]Krizaj D, Ryskamp DA, Tian N, Tezel G, Mitchell CH, Slepak VZ, et al.: From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res 2013, 39(2):105-19.
  • [6]Joachim SC, Gramlich OW, Laspas P, Schmid H, Beck S, von Pein HD, et al.: Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 2012., 7(7) Article ID e40616
  • [7]Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol. 1999, 117:1050-6.
  • [8]Wang L, Cioffi GA, Cull G, Dong J, Fortune B: Immunohistologic evidence for retinal glial cell changes in human glaucoma. I Invest Ophthalmol Vis Sci 2002, 43(4):1088-94.
  • [9]Bosco A, Steele MR, Vetter ML: Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 2011, 519(4):599-620.
  • [10]Taylor S, Calder CJ, Albon J, Erichsen JT, Boulton ME, Morgan JE: Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp Eye Res 2011, 92(5):338-43.
  • [11]Tezel G, Wax MB: Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2000, 20(23):8693-700.
  • [12]Yuan L, Neufeld AH: Tumor necrosis factor-α: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 2000, 32:42-50.
  • [13]Cho KJ, Kim JH, Park HY, Park CK: Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion. Brain Res. 2011, 1403:67-77.
  • [14]Gramlich OW, Beck S, von Thun Und Hohenstein-Blaul N, Boehm N, Ziegler A, Vetter JM, et al.: Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 2013., 8(2) Article ID e57557
  • [15]Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, et al.: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008, 49(4):1437-46.
  • [16]Yang X, Chou TH, Ruggeri M, Porciatti V: A new mouse model of inducible, chronic retinal ganglion cell dysfunction not associated with cell death. Invest Ophthalmol Vis Sci 2013, 54(3):1898-904.
  • [17]Wang K, Peng B, Lin B: Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model. Glia 2014, 62(12):1943-54.
  • [18]Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, et al.: Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 2012., 7(7) Article ID e40065
  • [19]Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91(2):461-553.
  • [20]Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, et al.: Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol. 2004, 22:657-82.
  • [21]Hasko G, Linden J, Cronstein B, Pacher P: Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Rev Drug Discovery 2008, 7(9):759-70.
  • [22]Saura J, Angulo E, Ejarque A, Casado V, Tusell JM, Moratalla R, et al.: Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 2005, 95(4):919-29.
  • [23]Minghetti L, Greco A, Potenza RL, Pezzola A, Blum D, Bantubungi K, et al.: Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration. J Neuropathol Exp Neurol 2007, 66(5):363-71.
  • [24]Rebola N, Simões AP, Canas PM, Tomé AR, Andrade GM, Barry CE, et al.: Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 2011, 117(1):100-11.
  • [25]Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA: Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Bioch Biophys Acta 2011, 1808(5):1380-99.
  • [26]Kretz A, Hermening SH, Isenmann S: A novel primary culture technique for adult retina allows for evaluation of CNS axon regeneration in rodents. J Neurosci Methods 2004, 136(2):207-19.
  • [27]Sappington RM, Chan M, Calkins DJ: Interleukin-6 protects retinal ganglion cells from pressure-induced death. Invest Ophthalmol Vis Sci 2006, 47(7):2932-42.
  • [28]Sappington R, Calkins DJ: Pressure-induced regulation of IL-6 in retinal glial cells: involvement of the ubiquitin/proteasome pathway and NF-kB. Invest Ophthalmol Vis Sci. 2006, 47:3860-9.
  • [29]Gavet O, Pines J: Progressive activation of cyclin B1-Cdk1 coordinates entry to mitosis. Dev Cell 2010, 18(4):533-43.
  • [30]Kurpius D, Wilson N, Fuller L, Hoffman A, Dailey ME: Early activation, motility, and homing of neonatal microglia to injured neurons does not require protein synthesis. Glia 2006, 54(1):58-70.
  • [31]Morrison HW, Filosa JA: A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflamm 2013, 10(1):4. BioMed Central Full Text
  • [32]Cunha RA, Almeida T, Ribeiro JA: Modification by arachidonic acid of extracellular adenosine metabolism and neuromodulatory action in the rat hippocampus. J Biol Chem 2000, 275(48):37572-81.
  • [33]Santiago AR, Gaspar JM, Baptista FI, Cristóvão AJ, Santos PF, Kamphuis W, et al.: Diabetes changes the levels of ionotropic glutamate receptors in the rat retina. Mol Vis. 2009, 15:1620-30.
  • [34]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262. S1046-2023(01)91262-9.
  • [35]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-50.
  • [36]Augusto E, Matos M, Sevigny J, El-Tayeb A, Bynoe MS, Muller CE, et al.: Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci 2013, 33(28):11390-9.
  • [37]Kraft AD, Harry GJ: Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 2011, 8(7):2980-3018.
  • [38]Brown GC: Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 2007, 35(Pt 5):1119-21.
  • [39]Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, et al.: Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 2009, 50(8):3860-8.
  • [40]Sanchez-Migallon MC, Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Vidal-Sanz M, Agudo-Barriuso M: Brain derived neurotrophic factor maintains Brn3a expression in axotomized rat retinal ganglion cells. Exp Eye Res 2011, 92(4):260-7.
  • [41]Bull ND, Johnson TV, Welsapar G, DeKorver NW, Tomarev SI, Martin KR: Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Invest Ophthalmol Vis Sci 2011, 52(6):3309-20.
  • [42]Naskar R, Wissing M, Thanos S: Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci. 2002, 43:2962-9.
  • [43]Tezel G, Li LY, Patil RV, Wax MB: TNF-α and TNF-α receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2001, 42:1787-94.
  • [44]Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H, et al.: Interleukin-1beta mediates ischemic injury in the rat retina. Exp Eye Res 2001, 73(5):661-7.
  • [45]Manni G, Centofanti M, Oddone F, Parravano M, Bucci MG: Interleukin-1beta tear concentration in glaucomatous and ocular hypertensive patients treated with preservative-free nonselective beta-blockers. Am J Ophthalmol 2005, 139(1):72-7.
  • [46]Sivakumar V, Foulds WS, Luu CD, Ling E-A, Kaur C: Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol 2011, 224(2):245-60.
  • [47]Gyoneva S, Davalos D, Biswas D, Swanger SA, Garnier-Amblard E, Loth F, et al.: Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 2014, 62(8):1345-60.
  • [48]Ahmad S, Fatteh N, El-Sherbiny NM, Naime M, Ibrahim AS, El-Sherbini AM, et al.: Potential role of A2A adenosine receptor in traumatic optic neuropathy. J Neuroimmunol 2013, 264(1-2):54-4.
  • [49]Ibrahim AS, El-Shishtawy MM, Zhang W, Caldwell RB, Liou GI: A2A adenosine receptor (A2AR) as a therapeutic target in diabetic retinopathy. Am J Pathol 2011, 178(5):2136-45.
  • [50]Ibrahim AS, El-Remessy AB, Matragoon S, Zhang W, Patel Y, Khan S, et al.: Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes. 2011, 60:1122-33.
  • [51]Johnson TV, Martin KR: Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci 2008, 49(8):3503-12.
  • [52]Ferrer-Martin RM, Martin-Oliva D, Sierra A, Carrasco MC, Martin-Estebane M, Calvente R: Microglial cells in organotypic cultures of developing and adult mouse retina and their relationship with cell death. Exp Eye Res. 2014, 121:42-57.
  • [53]Dai SS, Zhou YG, Li W, An JH, Li P, Yang N, et al.: Adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci 2010, 30(16):5802-10.
  • [54]Halldner L, Lopes LV, Dare E, Lindstrom K, Johansson B, Ledent C, et al.: Binding of adenosine receptor ligands to brain of adenosine receptor knock-out mice: evidence that CGS 21680 binds to A1 receptors in hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 2004, 370(4):270-8.
  • [55]Casado V, Barrondo S, Spasic M, Callado LF, Mallol J, Canela E, et al.: Gi protein coupling to adenosine A1-A2A receptor heteromers in human brain caudate nucleus. J Neurochem 2010, 114(4):972-80.
  • [56]Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Muller CE: International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 2011, 63(1):1-34.
  • [57]Blum D, Galas MC, Pintor A, Brouillet E, Ledent C, Muller CE, et al.: A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci 2003, 23(12):5361-9.
  • [58]Li W, Dai S, An J, Li P, Chen X, Xiong R, et al.: Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 2008, 151(4):1198-07.
  • [59]Silva CG, Porciuncula LO, Canas PM, Oliveira CR, Cunha RA: Blockade of adenosine A(2A) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiol Dis 2007, 27(2):182-9.
  • [60]Canas PM, Porciuncula LO, Cunha GMA, Silva CG, Machado NJ, Oliveira JMA, et al.: Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by β-Amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 2009, 29(47):14741-51.
  • [61]Simões A, Duarte JA, Agasse F, Canas P, Tomé AR, Agostinho P, et al.: Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway. J Neuroinflamm 2012, 9(1):204. BioMed Central Full Text
  • [62]Ferreira JM, Paes-de-Carvalho R: Long-term activation of adenosine A2A receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain Res. 2001, 900:169-76.
  • [63]Rebola N, Rodrigues RJ, Oliveira CR, Cunha RA: Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochem Int 2005, 47(5):317-25.
  • [64]Silva CG, Metin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, et al.: Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Science Transl Med 2013, 5(197):12.
  • [65]Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, et al.: Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 2012, 590(Pt 10):2285-304.
  • [66]Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, et al.: Microglia release ATP by exocytosis. Glia 2013, 61(8):1320-30.
  • [67]Newman EA: Glial cell inhibition of neurons by release of ATP. J Neurosci 2003, 23(5):1659-66.
  • [68]Beckel JM, Argall AJ, Lim JC, Xia J, Lu W, Coffey EE, et al.: Mechanosensitive release of adenosine 5′-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 2014, 62(9):1486-501.
  • [69]Reigada D, Lu W, Zhang M, Mitchell CH: Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 2008, 157(2):396-404.
  • [70]Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A, et al.: Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 2007, 25(9):2741-54.
  • [71]Zhang X, Li A, Ge J, Reigada D, Laties AM, Mitchell CH: Acute increase of intraocular pressure releases ATP into the anterior chamber. Exp Eye Res 2007, 85(5):637-43.
  • [72]Li A, Zhang X, Zheng D, Ge J, Laties AM, Mitchell CH: Sustained elevation of extracellular ATP in aqueous humor from humans with primary chronic angle-closure glaucoma. Exp Eye Res 2011, 93(4):528-33.
  • [73]Rodrigues R, Tomé A, Cunha R: ATP as a multi-target danger signal in the brain. Front Neurosci. 2015, 9:148.
  • [74]Hu H, Lu W, Zhang M, Zhang X, Argall AJ, Patel S, et al.: Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo. Exp Eye Res 2010, 91(3):425-32.
  • [75]Niyadurupola N, Sidaway P, Ma N, Rhodes JD, Broadway DC, Sanderson J: P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration. Invest Ophthalmol Vis Sci 2013, 54(3):2163-70.
  • [76]Sugiyama T, Lee SY, Horie T, Oku H, Takai S, Tanioka H, et al.: P2X(7) receptor activation may be involved in neuronal loss in the retinal ganglion cell layer after acute elevation of intraocular pressure in rats. Mol Vis. 2013, 19:2080-91.
  • [77]Rebola N, Lujan R, Cunha RA, Mulle C: Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 2008, 57(1):121-34.
  • [78]Cunha RA: Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signalling. 2005, 1:111-34.
  • [79]Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Gonçalves N, et al.: Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 2013, 10(1):16. BioMed Central Full Text
  • [80]Santiago AR, Baptista FI, Santos PF, Cristovao G, Ambrosio AF, Cunha RA, et al.: Role of microglia adenosine A2A receptors in retinal and brain neurodegenerative diseases. Mediat Inflamm. 2014, 2014:465694.
  • [81]Avila MY, Stone RA, Civan MM: A(1)-, A(2A)- and A(3)-subtype adenosine receptors modulate intraocular pressure in the mouse. Br J Pharmacol 2001, 134(2):241-5.
  文献评价指标  
  下载次数:33次 浏览次数:8次