期刊论文详细信息
Journal of Biomedical Science
Role of Nrf2 in bone metabolism
Jiliang Li2  Yang Yang1  Ai-Hua Xu1  Yong-Xin Sun1 
[1] Department of Rehabilitation, The First Affiliated Hospital, China Medical University, No.155,North Nanjing Street, Heping District, Shenyang 110001, China;Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis 46202, IN, USA
关键词: Reactive oxygen species;    Osteoclast;    Osteoblast;    Osteoporosis;    Nrf2;   
Others  :  1235093
DOI  :  10.1186/s12929-015-0212-5
 received in 2015-05-21, accepted in 2015-10-16,  发布年份 2015
PDF
【 摘 要 】

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor expressed in many cell types, including osteoblasts, osteocytes, and osteoclasts. Nrf2 has been considered a master regulator of cytoprotective genes against oxidative and chemical insults. The lack of Nrf2 can induce pathologies in multiple organs. Nrf2 deficiency promotes osteoclast differentiation and osteoclast activity, which leads to an increase in bone resorption. The role of Nrf2 in osteoblast differentiation and osteoblast activity is more complex. Nrf2 mediates anabolic effects within an ideal range. Nrf2 deletion suppresses load induced bone formation and delays fracture healing. Overall, Nrf2 plays an important role in the regulation of bone homeostasis in bone cells.

【 授权许可】

   
2015 Sun et al.

【 预 览 】
附件列表
Files Size Format View
20151231093657665.pdf 845KB PDF download
Fig. 2. 58KB Image download
Fig. 1. 31KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Favus MJ. Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. The American Society for Bone and Mineral Research, Washington, DC; 2006.
  • [2]Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK et al.. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007; 282(37):27285-27297.
  • [3]Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab. 2010; 95(4):1496-1504.
  • [4]Cusano NE, Bilezikian JP. Combination anabolic and antiresorptive therapy for osteoporosis. Endocrinol Metab Clin N Am. 2012; 41(3):643-654.
  • [5]Dempster DW. Anatomy and function of the adult skeleton. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Favus MJ, editor. The American Society for Bone and Mineral Research, Washington, DC; 2006: p.7-11.
  • [6]Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff's law: the remodeling problem. Anat Rec. 1990; 226(4):414-422.
  • [7]Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec. 1990; 226(4):403-413.
  • [8]Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011; 124(Pt 7):991-998.
  • [9]Robling AG. The interaction of biological factors with mechanical signals in bone adaptation: recent developments. J Cell Sci. 2012; 10(2):126-131.
  • [10]Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000; 289(5484):1504-1508.
  • [11]Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005; 115(12):3318-3325.
  • [12]No authors.Prevention and management of osteoporosis. World Health Organization technical report series. 2003;921:1–164, back cover.
  • [13]Motohashi H, O’Connor T, Katsuoka F, Engel JD, Yamamoto M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 2002; 294(1–2):1-12.
  • [14]Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med. 2014; 66:36-44.
  • [15]Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004; 10(11):549-557.
  • [16]Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al.. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999; 13(1):76-86.
  • [17]Jeyapaul J, Jaiswal AK. Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Pharmacol. 2000; 59(11):1433-1439.
  • [18]Jowsey IR, Jiang Q, Itoh K, Yamamoto M, Hayes JD. Expression of the aflatoxin B1-8,9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2 transcription factor through an antioxidant response element. Mol Pharmacol. 2003; 64(5):1018-1028.
  • [19]Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J. 2003; 374(Pt 2):337-348.
  • [20]Hinoi E, Fujimori S, Wang L, Hojo H, Uno K, Yoneda Y. Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem. 2006; 281(26):18015-18024.
  • [21]Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005; 224(2):171-184.
  • [22]Zhang Y, Gordon GB. A strategy for cancer prevention: stimulation of the Nrf2-ARE signaling pathway. Mol Cancer Ther. 2004; 3(7):885-893.
  • [23]Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005; 45:51-88.
  • [24]Chan K, Lu R, Chang JC, Kan YW. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci U S A. 1996; 93(24):13943-13948.
  • [25]Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab. 2015; 33(4):359-370.
  • [26]Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. Eur J Clin Investig. 2006; 116(5):1186-1194.
  • [27]Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P et al.. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003; 88(4):1523-1527.
  • [28]Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med. 2013; 65:789-799.
  • [29]Rana T, Schultz MA, Freeman ML, Biswas S. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radic Biol Med. 2012; 53(12):2298-2307.
  • [30]Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr Drug Metab. 2007; 8(5):519-525.
  • [31]Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int. 2008; 28(4):317-321.
  • [32]Ibanez L, Ferrandiz ML, Brines R, Guede D, Cuadrado A, Alcaraz MJ. Effects of Nrf2 deficiency on bone microarchitecture in an experimental model of osteoporosis. Oxidative Med Cell Longev. 2014; 2014:726590.
  • [33]Kim J-H, Singhal V, Biswal S, Thimmulappa RK, DiGirolamo DJ. Nrf2 is required for normal postnatal bone acquisition in mice. Bone Res. 2014.
  • [34]Park CK, Lee Y, Kim KH, Lee ZH, Joo M, Kim HH. Nrf2 is a novel regulator of bone acquisition. Bone. 2014; 63:36-46.
  • [35]Sun YX, Li L, Corry KA, Zhang P, Yang Y, Himes E et al.. Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation. Bone. 2015; 74C:1-9.
  • [36]Kanzaki H, Shinohara F, Kajiya M, Kodama T. The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem. 2013; 288(32):23009-23020.
  • [37]Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS et al.. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int. 2010; 87(3):226-235.
  • [38]Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H et al.. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005; 202(9):1261-1269.
  • [39]Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007; 282(37):27298-27305.
  • [40]Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM et al.. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun. 2004; 314(1):197-207.
  • [41]Mandal CC, Ganapathy S, Gorin Y, Mahadev K, Block K, Abboud HE et al.. Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J. 2011; 433(2):393-402.
  • [42]Robaszkiewicz A, Erdelyi K, Kovacs K, Kovacs I, Bai P, Rajnavolgyi E et al.. Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death. Free Radic Biol Med. 2012; 53(8):1552-1564.
  • [43]Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V et al.. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999; 13(8):1025-1036.
  • [44]Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K et al.. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89(5):755-764.
  • [45]Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M et al.. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn: Off Pub American Assoc Anatomists. 1999; 214(4):279-290.
  • [46]Geoffroy V, Kneissel M, Fournier B, Boyde A, Matthias P. High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. J Mol Cell Biol. 2002; 22(17):6222-6233.
  • [47]Zhang S, Xiao Z, Luo J, He N, Mahlios J, Quarles LD. Dose-dependent effects of Runx2 on bone development. J Bone Miner Res : Off J American Soc Bone Mineral Res. 2009; 24(11):1889-1904.
  • [48]Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S et al.. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003; 35(3):238-245.
  • [49]Kohler UA, Kurinna S, Schwitter D, Marti A, Schafer M, Hellerbrand C et al.. Activated Nrf2 impairs liver regeneration in mice by activation of genes involved in cell-cycle control and apoptosis. Hepatology. 2014; 60(2):670-678.
  • [50]Schafer M, Willrodt AH, Kurinna S, Link AS, Farwanah H, Geusau A et al.. Activation of Nrf2 in keratinocytes causes chloracne (MADISH)-like skin disease in mice. EMBO Mol Med. 2014; 6(4):442-457.
  • [51]Lippross S, Beckmann R, Streubesand N, Ayub F, Tohidnezhad M, Campbell G et al.. Nrf2 deficiency impairs fracture healing in mice. Calcif Tissue Int. 2014; 95(4):349-361.
  • [52]Nioi P, Hayes JD. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat Res. 2004; 555(1–2):149-171.
  • [53]Ade N, Leon F, Pallardy M, Peiffer JL, Kerdine-Romer S, Tissier MH et al.. HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: role of the Keap1/Nrf2 pathway. Toxicol Sci : Off J Soc Toxicology. 2009; 107(2):451-460.
  • [54]Chan TS, Teng S, Wilson JX, Galati G, Khan S, O’Brien PJ. Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1). Free Radic Res. 2002; 36(4):421-427.
  • [55]Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ et al.. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol. 2004; 65(5):1238-1247.
  • [56]Yamamoto N, Fukuda K, Matsushita T, Matsukawa M, Hara F, Hamanishi C. Cyclic tensile stretch stimulates the release of reactive oxygen species from osteoblast-like cells. Calcif Tissue Int. 2005; 76(6):433-438.
  • [57]Baur A, Henkel J, Bloch W, Treiber N, Scharffetter-Kochanek K, Bruggemann GP et al.. Effect of exercise on bone and articular cartilage in heterozygous manganese superoxide dismutase (SOD2) deficient mice. Free Radic Res. 2011; 45(5):550-558.
  • [58]Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T et al.. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 2012; 18(3):405-412.
  文献评价指标  
  下载次数:18次 浏览次数:3次