| EvoDevo | |
| Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis | |
| Jordi Solana1  | |
| [1] Laboratory of Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany | |
| 关键词: Neoblasts; Regeneration; Germ cells; Stem cells; Germline; Preformation; Epigenesis; Nuage; Germ plasm; Weismann barrier; | |
| Others : 807083 DOI : 10.1186/2041-9139-4-2 |
|
| received in 2012-09-19, accepted in 2012-12-04, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Germline determination is believed to occur by either preformation or epigenesis. Animals that undergo germ cell specification by preformation have a continuous germline. However, animals with germline determination by epigenesis have a discontinuous germline, with somatic cells intercalated. This vision is contrary to August Weismann’s Germ Plasm Theory and has led to several controversies. Recent data from metazoans as diverse as planarians, annelids and sea urchins reveal the presence of pluripotent stem cell populations that express germ plasm components, despite being considered to be somatic. These data also show that germ plasm is continuous in some of these animals, despite their discontinuous germline.
Presentation of the hypothesis
Here, based on recent molecular data on germ plasm components, I revise the germline concept. I introduce the concept of primordial stem cells, which are evolutionarily conserved stem cells that carry germ plasm components from the zygote to the germ cells. These cells, delineated by the classic concept of the Weismann barrier, can contribute to different extents to somatic tissues or be present in a rudimentary state. The primordial stem cells are a part of the germline that can drive asexual reproduction.
Testing the hypothesis
Molecular information on the expression of germ plasm components is needed during early development of non-classic model organisms, with special attention to those capable of undergoing asexual reproduction and regeneration. The cell lineage of germ plasm component-containing cells will also shed light on their position with respect to the Weismann barrier. This information will help in understanding the germline and its associated stem cells across metazoan phylogeny.
Implications of the hypothesis
This revision of the germline concept explains the extensive similarities observed among stem cells and germline cells in a wide variety of animals, and predicts the expression of germ plasm components in many others. The life history of these animals can be simply explained by changes in the extent of self-renewal, proliferation and developmental potential of the primordial stem cells. The inclusion of the primordial stem cells as a part of the germline, therefore, solves many controversies and provides a continuous germline, just as originally envisaged by August Weismann.
【 授权许可】
2013 Solana; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708103113855.pdf | 2622KB | ||
| Figure 6. | 92KB | Image | |
| Figure 5. | 59KB | Image | |
| Figure 4. | 32KB | Image | |
| Figure 3. | 110KB | Image | |
| Figure 2. | 107KB | Image | |
| Figure 1. | 109KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Weismann A: Das Keimplasma: eine Theorie der Vererbung. Jena: Fischer; 1892.
- [2]Extavour CG, Akam M: Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 2003, 130:5869-5884.
- [3]Extavour CG: Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integr Comp Biol 2007, 47:770-785.
- [4]Juliano CE, Swartz SZ, Wessel GM: A conserved germline multipotency program. Development 2010, 137:4113-4126.
- [5]Guo T, Peters AH, Newmark PA: A Bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 2006, 11:159-169.
- [6]Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sanchez Alvarado A: SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 2005, 310:1327-1330.
- [7]Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, Locci MT, Evangelista M, Gremigni V: DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 2005, 132:1863-1874.
- [8]Solana J, Lasko P, Romero R: Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 2009, 328:410-421.
- [9]Giani VC Jr, Yamaguchi E, Boyle MJ, Seaver EC: Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. EvoDevo 2011, 2:10. BioMed Central Full Text
- [10]Rebscher N, Zelada-Gonzalez F, Banisch TU, Raible F, Arendt D: Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 2007, 306:599-611.
- [11]Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T: Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 2001, 211:299-308.
- [12]Mochizuki K, Sano H, Kobayashi S, Nishimiya-Fujisawa C, Fujisawa T: Expression and evolutionary conservation of nanos-related genes in Hydra. Dev Genes Evol 2000, 210:591-602.
- [13]Rebscher N, Volk C, Teo R, Plickert G: The germ plasm component Vasa allows tracing of the interstitial stem cells in the cnidarian Hydractinia echinata. Dev Dyn 2008, 237:1736-1745.
- [14]Juliano CE, Voronina E, Stack C, Aldrich M, Cameron AR, Wessel GM: Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. Dev Biol 2006, 300:406-415.
- [15]Agata K, Nakajima E, Funayama N, Shibata N, Saito Y, Umesono Y: Two different evolutionary origins of stem cell systems and their molecular basis. Semin Cell Dev Biol 2006, 17:503-509.
- [16]Cardona A, Hartenstein V, Romero R: Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Dev Genes Evol 2006, 216:667-681.
- [17]Dill KK, Seaver EC: Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp. I. Dev Genes Evol 2008, 218:453-463.
- [18]Leclere L, Jager M, Barreau C, Chang P, Le Guyader H, Manuel M, Houliston E: Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol 2012, 364:236-248.
- [19]Rebscher N, Lidke AK, Ackermann CF: Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerillii are two distinct cell populations. EvoDevo 2012, 3:9. BioMed Central Full Text
- [20]Solana J, Romero R: SpolvlgA is a DDX3/PL10-related DEAD-box RNA helicase expressed in blastomeres and embryonic cells in planarian embryonic development. Int J Biol Sci 2009, 5:64-73.
- [21]Sugio M, Takeuchi K, Kutsuna J, Tadokoro R, Takahashi Y, Yoshida-Noro C, Tochinai S: Exploration of embryonic origins of germline stem cells and neoblasts in Enchytraeus japonensis (Oligochaeta, Annelida). Gene Expr Patterns 2008, 8:227-236.
- [22]Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK: Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 2011, 353:147-159.
- [23]Yajima M, Wessel GM: Small micromeres contribute to the germline in the sea urchin. Development 2011, 138:237-243.
- [24]Aboobaker AA: Planarian stem cells: a simple paradigm for regeneration. Trends Cell Biol 2011, 21:304-311.
- [25]Rink JC: Stem cell systems and regeneration in planaria. Dev Genes Evol , : . http://www.ncbi.nlm.nih.gov/pubmed/23138344
- [26]Shibata N, Rouhana L, Agata K: Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Dev Growth Differ 2010, 52:27-41.
- [27]Arkov AL, Ramos A: Building RNA-protein granules: insight from the germline. Trends Cell Biol 2010, 20:482-490.
- [28]Eddy EM: Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 1975, 43:229-280.
- [29]Wagner DE, Wang IE, Reddien PW: Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 2011, 332:811-816.
- [30]Cardona A, Hartenstein V, Romero R: The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 2005, 215:109-131.
- [31]Martin-Duran JM, Monjo F, Romero R: Planarian embryology in the era of comparative developmental biology. Int J Dev Biol 2012, 56:39-48.
- [32]Handberg-Thorsager M, Salo E: The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration. Dev Genes Evol 2007, 217:403-411.
- [33]Wang Y, Zayas RM, Guo T, Newmark PA: Nanos function is essential for development and regeneration of planarian germ cells. Proc Natl Acad Sci U S A 2007, 104:5901-5906.
- [34]Sato K, Shibata N, Orii H, Amikura R, Sakurai T, Agata K, Kobayashi S, Watanabe K: Identification and origin of the germline stem cells as revealed by the expression of nanos-related gene in planarians. Dev Growth Differ 2006, 48:615-628.
- [35]Tanaka EM, Reddien PW: The cellular basis for animal regeneration. Dev Cell 2011, 21:172-185.
- [36]Wagner DE, Ho JJ, Reddien PW: Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 2012, 10:299-311.
- [37]Aravin AA, Hannon GJ, Brennecke J: The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 2007, 318:761-764.
- [38]Juliano C, Wang J, Lin H: Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 2011, 45:447-469.
- [39]Senti KA, Brennecke J: The piRNA pathway: a fly’s perspective on the guardian of the genome. Trends Genet 2010, 26:499-509.
- [40]De Mulder K, Pfister D, Kuales G, Egger B, Salvenmoser W, Willems M, Steger J, Fauster K, Micura R, Borgonie G, Ladurner P: Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. Dev Biol 2009, 334:198-212.
- [41]Pfister D, De Mulder K, Hartenstein V, Kuales G, Borgonie G, Marx F, Morris J, Ladurner P: Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev Biol 2008, 319:146-159.
- [42]Martin-Duran JM, Egger B: Developmental diversity in free-living flatworms. EvoDevo 2012, 3:7. BioMed Central Full Text
- [43]Boyer BC, Henry JQ, Martindale MQ: Dual origins of mesoderm in a basal spiralian: cell lineage analyses in the polyclad turbellarian Hoploplana inquilina. Dev Biol 1996, 179:329-338.
- [44]Willems M, Egger B, Wolff C, Mouton S, Houthoofd W, Fonderie P, Couvreur M, Artois T, Borgonie G: Embryonic origins of hull cells in the flatworm Macrostomum lignano through cell lineage analysis: developmental and phylogenetic implications. Dev Genes Evol 2009, 219:409-417.
- [45]Kunzel T, Heiermann R, Frank U, Muller W, Tilmann W, Bause M, Nonn A, Helling M, Schwarz RS, Plickert G: Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras. Dev Biol 2010, 348:120-129.
- [46]Labbe RM, Irimia M, Currie KW, Lin A, Zhu SJ, Brown DD, Ross EJ, Voisin V, Bader GD, Blencowe BJ, Pearson BJ: A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 2012, 30:1734-1745.
- [47]Onal P, Grun D, Adamidi C, Rybak A, Solana J, Mastrobuoni G, Wang Y, Rahn HP, Chen W, Kempa S, Ziebold U, Rajewsky N: Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J 2012, 31:2755-2769.
- [48]Resch AM, Palakodeti D, Lu YC, Horowitz M, Graveley BR: Transcriptome analysis reveals strain-specific and conserved stemness genes in Schmidtea mediterranea. PLoS One 2012, 7:e34447.
- [49]Solana J, Kao D, Mihaylova Y, Jaber-Hijazi F, Malla S, Wilson R, Aboobaker A: Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq. RNA interference and irradiation approach. Genome Biol 2012, 13:R19. BioMed Central Full Text
- [50]Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, Oberg HH, Domazet-Loso T, Sugimoto T, Niwa H, Bosch TC: Molecular signatures of the three stem cell lineages in Hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol 2012, 29:3267-3280.
- [51]Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K: Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 2010, 12:275-287.
- [52]Funayama N: The stem cell system in demosponges: insights into the origin of somatic stem cells. Dev Growth Differ 2010, 52:1-14.
- [53]Hejnol A: A twist in time–the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol 2010, 50:695-706.
- [54]Nielsen C: Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and mollusca. J Exp Zool B Mol Dev Evol 2004, 302:35-68.
- [55]Nielsen C: Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. J Exp Zool B Mol Dev Evol 2005, 304:401-447.
- [56]Lambert JD: Mesoderm in spiralians: the organizer and the 4d cell. J Exp Zool B Mol Dev Evol 2008, 310:15-23.
- [57]Lambert JD: Developmental patterns in spiralian embryos. Curr Biol 2010, 20:R72-R77.
- [58]Fabioux C, Huvet A, Lelong C, Robert R, Pouvreau S, Daniel JY, Minguant C, Le Pennec M: Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas. Biochem Biophys Res Commun 2004, 320:592-598.
- [59]Gline SE, Nakamoto A, Cho SJ, Chi C, Weisblat DA: Lineage analysis of micromere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex. Dev Biol 2011, 353:120-133.
- [60]Henry JQ, Perry KJ, Martindale MQ: Cell specification and the role of the polar lobe in the gastropod mollusc Crepidula fornicata. Dev Biol 2006, 297:295-307.
- [61]Kang D, Pilon M, Weisblat DA: Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: primordial germ cells arise from segmental mesoderm. Dev Biol 2002, 245:28-41.
- [62]Lyons DC, Perry KJ, Lesoway MP, Henry JQ: Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. EvoDevo 2012, 3:21. BioMed Central Full Text
- [63]Meyer NP, Boyle MJ, Martindale MQ, Seaver EC: A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta. EvoDevo 2010, 1:8. BioMed Central Full Text
- [64]Swartz SZ, Chan XY, Lambert JD: Localization of Vasa mRNA during early cleavage of the snail Ilyanassa. Dev Genes Evol 2008, 218:107-113.
- [65]Fischer AH, Henrich T, Arendt D: The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 2010, 7:31. BioMed Central Full Text
- [66]Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C: Phylogenomic analyses unravel annelid evolution. Nature 2011, 471:95-98.
- [67]Rabinowitz JS, Chan XY, Kingsley EP, Duan Y, Lambert JD: Nanos is required in somatic blast cell lineages in the posterior of a mollusk embryo. Curr Biol 2008, 18:331-336.
- [68]Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM: Phylogenomics reveals deep molluscan relationships. Nature 2011, 477:452-456.
- [69]Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM: Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. J Exp Zool B Mol Dev Evol 2010, 314:267-279.
- [70]Hubbard EJ, Greenstein D: Introduction to the germ line. Worm Book 2005, 1:1-4.
- [71]Strome S: Specification of the germ line. WormBook 2005, 28:1-10.
- [72]Juliano CE, Yajima M, Wessel GM: Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Dev Biol 2010, 337:220-232.
- [73]Yajima M, Wessel GM: The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin. Development 2011, 138:2217-2222.
- [74]Yajima M, Wessel GM: Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin. Development 2012, 139:3786-3794.
- [75]Pehrson JR, Cohen LH: The fate of the small micromeres in sea urchin development. Dev Biol 1986, 113:522-526.
- [76]Fujimura M, Takamura K: Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev Genes Evol 2000, 210:64-72.
- [77]Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A: Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 2006, 133:2683-2693.
- [78]Takamura K, Fujimura M, Yamaguchi Y: Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev Genes Evol 2002, 212:11-18.
- [79]Kawamura K, Sunanaga T: Hemoblasts in colonial tunicates: are they stem cells or tissue-restricted progenitor cells? Dev Growth Differ 2010, 52:69-76.
- [80]Sunanaga T, Inubushi H, Kawamura K: Piwi-expressing hemoblasts serve as germline stem cells during postembryonic germ cell specification in colonial ascidian. Botryllus primigenus. Dev Growth Differ 2010, 52:603-614.
- [81]Nguyen-Chi M, Morello D: RNA-binding proteins, RNA granules, and gametes: is unity strength? Reproduction 2011, 142:803-817.
- [82]Seydoux G, Braun RE: Pathway to totipotency: lessons from germ cells. Cell 2006, 127:891-904.
- [83]Shukalyuk AI, Golovnina KA, Baiborodin SI, Gunbin KV, Blinov AG, Isaeva VV: Vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala). Cell Biol Int 2007, 31:97-108.
- [84]Lesch BJ, Page DC: Genetics of germ cell development. Nat Rev Genet 2012, 13:781-794.
- [85]Leatherman JL, Jongens TA: Transcriptional silencing and translational control: key features of early germline development. Bioessays 2003, 25:326-335.
- [86]Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A: Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 1996, 382:713-716.
- [87]Pitt JN, Schisa JA, Priess JR: P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. Dev Biol 2000, 219:315-333.
- [88]Anderson P, Kedersha N: RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009, 10:430-436.
- [89]Kiebler MA, Bassell GJ: Neuronal RNA granules: movers and makers. Neuron 2006, 51:685-690.
- [90]Yajima M, Wessel GM: The multiple hats of Vasa: its functions in the germline and in cell cycle progression. Mol Reprod Dev 2011, 78:861-867.
- [91]Alie A, Leclere L, Jager M, Dayraud C, Chang P, Le Guyader H, Queinnec E, Manuel M: Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of “germline genes” with stemness. Dev Biol 2011, 350:183-197.
- [92]Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H: A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 1998, 12:3715-3727.
- [93]Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP, Hoffman R: Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 2001, 97:426-434.
- [94]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128:1089-1103.
- [95]Egger B, Steinke D, Tarui H, De Mulder K, Arendt D, Borgonie G, Funayama N, Gschwentner R, Hartenstein V, Hobmayer B, Hooge M, Hrouda M, Ishida S, Kobayashi C, Kuales G, Nishimura O, Pfister D, Rieger R, Salvenmoser W, Smith J, Technau U, Tyler S, Agata K, Salzburger W, Ladurner P: To be or not to be a flatworm: the acoel controversy. PLoS One 2009, 4:e5502.
- [96]Carre D, Djediat C, Sardet C: Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 2002, 129:661-670.
- [97]Hayashi K, de Sousa Lopes SM, Surani MA: Germ cell specification in mice. Science 2007, 316:394-396.
- [98]Sterneckert J, Hoing S, Scholer HR: Concise review: Oct4 and more: the reprogramming expressway. Stem Cells 2012, 30:15-21.
- [99]McLaren A: Primordial germ cells in the mouse. Dev Biol 2003, 262:1-15.
- [100]Hanna JH, Saha K, Jaenisch R: Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 2010, 143:508-525.
- [101]Rossant J: Stem cells and early lineage development. Cell 2008, 132:527-531.
- [102]Matsui Y, Zsebo K, Hogan BL: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992, 70:841-847.
- [103]Resnick JL, Bixler LS, Cheng L, Donovan PJ: Long-term proliferation of mouse primordial germ cells in culture. Nature 1992, 359:550-551.
- [104]Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD: Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 1998, 95:13726-13731.
- [105]Robinton DA, Daley GQ: The promise of induced pluripotent stem cells in research and therapy. Nature 2012, 481:295-305.
- [106]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
- [107]Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, Plickert G, Frank U: Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. Development 2011, 138:2429-2439.
- [108]Plickert G, Frank U, Muller WA: Hydractinia, a pioneering model for stem cell biology and reprogramming somatic cells to pluripotency. Int J Dev Biol 2012, 56:519-534.
- [109]Bely AE: Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 2006, 46:508-518.
- [110]Bely AE: Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol 2010, 50:515-527.
- [111]Egger B, Gschwentner R, Rieger R: Free-living flatworms under the knife: past and present. Dev Genes Evol 2007, 217:89-104.
PDF