期刊论文详细信息
EvoDevo
Crocodylians evolved scattered multi-sensory micro-organs
Michel C Milinkovitch1  Nicolas Di-Poï1 
[1] Department of Genetics & Evolution, Laboratory of Artificial & Natural Evolution (LANE), University of Geneva, 1211, Geneva 4,Switzerland
关键词: DPR;    ISO;    Sensory organ;    Scale;    Integument;    Crocodylians;   
Others  :  806463
DOI  :  10.1186/2041-9139-4-19
 received in 2013-04-06, accepted in 2013-06-04,  发布年份 2013
PDF
【 摘 要 】

Background

During their evolution towards a complete life cycle on land, stem reptiles developed both an impermeable multi-layered keratinized epidermis and skin appendages (scales) providing mechanical, thermal, and chemical protection. Previous studies have demonstrated that, despite the presence of a particularly armored skin, crocodylians have exquisite mechanosensory abilities thanks to the presence of small integumentary sensory organs (ISOs) distributed on postcranial and/or cranial scales.

Results

Here, we analyze and compare the structure, innervation, embryonic morphogenesis and sensory functions of postcranial, cranial, and lingual sensory organs of the Nile crocodile (Crocodylus niloticus) and the spectacled caiman (Caiman crocodilus). Our molecular analyses indicate that sensory neurons of crocodylian ISOs express a large repertoire of transduction channels involved in mechano-, thermo-, and chemosensory functions, and our electrophysiological analyses confirm that each ISO exhibits a combined sensitivity to mechanical, thermal and pH stimuli (but not hyper-osmotic salinity), making them remarkable multi-sensorial micro-organs with no equivalent in the sensory systems of other vertebrate lineages. We also show that ISOs all exhibit similar morphologies and modes of development, despite forming at different stages of scale morphogenesis across the body.

Conclusions

The ancestral vertebrate diffused sensory system of the skin was transformed in the crocodylian lineages into an array of discrete multi-sensory micro-organs innervated by multiple pools of sensory neurons. This discretization of skin sensory expression sites is unique among vertebrates and allowed crocodylians to develop a highly-armored, but very sensitive, skin.

【 授权许可】

   
2013 Di-Poï and Milinkovitch; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708093358749.pdf 4223KB PDF download
Figure 5. 86KB Image download
Figure 4. 242KB Image download
Figure 3. 212KB Image download
Figure 2. 234KB Image download
Figure 1. 342KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Davis JE, Spotila JR, Schefler WC: Evaporative water loss from the American alligator, Alligator mississippiensis: the relative importance of respiratory and cutaneous components and the regulatory role of the skin. Comp Biochem Physiol A 1980, 67:439-446.
  • [2]Lillywhite HB, Maderson PFA: Skin structure and permeability. In Biology of the Reptilia. Volume 12. Physiology C. Edited by Gans C, Pough FH. New York and London: Academic Press; 1982:397-442.
  • [3]Matoltsy AG, Bereiter-Hahn J: Biology of the Integument. In Biology of the Integument. Volume 2. Vertebrates. Edited by Bereiter-Hahn J, Matoltsy AG, Sylvia-Richards K. Berlin-Heidelberg-New York-Tokyo: Springer Verlag; 1986:1-7.
  • [4]Alibardi L, Thompson MB: Scale morphogenesis and ultrastructure of dermis during embryonic development in the alligator (Alligator mississippiensis, Crocodilia, Reptilia). Acta Zool 2000, 81:325-338.
  • [5]Alibardi L, Thompson MB: Fine structure of the developing epidermis in the embryo of the American alligator (Alligator mississippiensis, Crocodilia, Reptilia). J Anat 2001, 198:265-282.
  • [6]Alibardi L, Thompson MB: Keratinization and ultrastructure of the epidermis of late embryonic stages in the alligator (Alligator mississippiensis). J Anat 2002, 201:71-84.
  • [7]Alibardi L: Immunocytochemistry and keratinization in the epidermis of crocodilians. Zool Stud 2003, 42:346-356.
  • [8]Alibardi L: Keratinization in crocodilian scales and avian epidermis: evolutionary implications for the origin of avian apteric epidermis. Belg J Zool 2005, 1:9-20.
  • [9]Vickaryous MK, Hall BK: Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J Morphol 2008, 269:398-422.
  • [10]Alibardi L: Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. Acta Zool 2010, 92:187-200.
  • [11]Milinkovitch MC, Manukyan L, Debry A, Di-Poï N, Martin S, Singh D, Lambert D, Zwicker M: Crocodile head scales are not developmental units but emerge from physical cracking. Science 2013, 339:78-81.
  • [12]Nakamura T: Cellular and molecular constituents of olfactory sensation in vertebrates. Comp Biochem Physiol A 2000, 126:17-32.
  • [13]Sukharev S, Corey DP: Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 2004, 219:re4.
  • [14]Landmann L: The skin of reptiles: epidermis and dermis. In Biology of the integument. Volume 2. Vertebrates. Berlin-Heidelberg-New York-Tokyo: Springer Verlag; 1986:150-187.
  • [15]von Düring M: The ultrastructure of lamellated mechanoreceptors in the skin of reptiles. Z Anat Entwicklungsgesch 1973, 143:81-94.
  • [16]von Düring M: The radiant heat receptor and other tissue receptors in the scales of the upper jaw of Boa constrictor. Anat Embryol 1974, 3:299-319.
  • [17]Sherbrooke WC, Nagle RB: Phrynosoma intraepidermal receptor: a dorsal intraepidermal mechanoreceptor in horned lizards (Phrynosoma; Phrynosomatidae; Reptilia). J Morphol 1996, 228:145-154.
  • [18]Nishida Y, Yoshie S, Fujita T: Oral sensory papillae, chemo- and mechano-receptors, in the snake, Elaphe quadrivirgata. A light and electron microscopic study. Arch Histol Cytol 2000, 63:55-70.
  • [19]Buchtová M, Páč L, Knotek Z, Tichý F: Complex sensory corpuscles in the upper jaw of Horsfield’s Tortoise (Testudo horsfieldii). Acta Vet Brno 2009, 78:193-197.
  • [20]Chang C, Wu P, Baker RE, Maini PK, Alibardi L, Chuong CM: Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. Int J Dev Biol 2009, 53:813-826.
  • [21]Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sánchez EE, Perez JC, Weissman JS, Julius D: Molecular basis of infrared detection by snakes. Nature 2010, 464:1006-1011.
  • [22]von Düring M: The ultrastructure of cutaneous receptors in the skin of Caiman crocodilus. Abhandlungen Rhein Westfal Akad Wiss 1974, 53:123-134.
  • [23]von Düring M, Miller MR: Sensory nerve endings of the skin and deeper structures. In Biology of the Reptilia. Volume 9. Neurology A. Edited by Gans C, Northcutt RG, Ulinski P. New York and London: Academic Press; 1979:407-441.
  • [24]Jackson K, Butler DG, Youson JH: Morphology and ultrastructure of possible integumentary sense organs in the estuarine crocodile (Crocodylus porosus). J Morphol 1996, 229:315-324.
  • [25]Brazaitis P: Identification of crocodilian skins and products. In Wildlife Management: Crocodiles and Alligators. Edited by Webb GJW, Manolis SC, Whitehead PJ. Chipping Norton, Australia: Surrey Beatty & Sons Pty Ltd; 1987:373-386.
  • [26]Soares D: Neurology: an ancient sensory organ in crocodilians. Nature 2002, 417:241-242.
  • [27]Leitch DB, Catania KC: Structure, innervation and response properties of integumentary sensory organs in crocodilians. J Exp Biol 2012, 215:4217-4230.
  • [28]Taplin LE: Drinking of fresh water but not seawater by the estuarine crocodile (Crocodylus porosus). Comp Biochem Physiol A 1984, 77:763-767.
  • [29]Jackson K, Butler DG, Brooks DR: Habitat and phylogeny influence salinity discrimination in crocodilians: implications for osmoregulatory physiology and historical biogeography. Biol J Linn Soc 1996, 58:371-383.
  • [30]Jackson K, Brooks DR: Do crocodiles co-opt their sense of “touch” to “taste”? A possible new type of vertebrate sensory organ. Amphibia-Reptilia 2007, 28:277-285.
  • [31]Taplin LE, Grigg GC, Harlow P, Ellis TM, Dunson WA: Lingual Salt Glands in Crocodylus acutus and C. johnstoni and their absence from Alligator mississipiensis and Caiman crocodiles. J Comp Physiol B 1982, 149:43-47.
  • [32]Taplin LE, Grigg GC, Beard L: Salt gland function in fresh water crocodiles: evidence for a marine phase in eusuchian evolution? In Biology of Australasian frogs and reptiles. Edited by Grigg G, Shine R, Ehmann H. Baulkham Hills BC, NSW, Australia: Surrey Beatty and Sons Pty Ltd; 1985:403-410.
  • [33]Yoshie S, Yokosuka H, Kanazawa H, Fujita T: The existence of merkel cells in the lingual connective tissue of the Surinam caiman, Caiman crocodilus crocodilus (Order Crocodilia). Arch Histol Cytol 1999, 62:97-106.
  • [34]Putterill JF, Soley JT: General morphology of the oral cavity of the Nile crocodile, Crocodylus niloticus (Laurenti, 1768). I. Palate and gingivae. Onderstepoort J Vet Res 2003, 70:281-297.
  • [35]Putterill JF, Soley JT: General morphology of the oral cavity of the Nile crocodile, Crocodylus niloticus (Laurenti, 1768). II. The tongue. Onderstepoort J Vet Res 2004, 71:263-277.
  • [36]Ferguson MWJ: The reproductive biology and embryology of crocodilians. In Biology of the Reptilia. Volume 14. Development A. Edited by Gans C, Billett F, Maderson PFA. New York: Wiley; 1985:329-491.
  • [37]Ferguson MWJ: Post-laying stages of embryonic development for crocodilians. In Wildlife Management: Crocodiles and Alligators. Edited by Webb GJW, Manolis SC, Whitehead PJ. Chipping Norton, Australia: Surrey Beatty & Sons Pty Ltd; 1987:427-444.
  • [38]Di-Poï N, Montoya-Burgos JI, Miller H, Pourquié O, Milinkovitch MC, Duboule D: Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature 2010, 464:99-103.
  • [39]Tzika A, Helaers R, Schramm G, Milinkovitch MC: Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles. Evodevo 2011, 2:19. BioMed Central Full Text
  • [40]St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed’Hom B, Abzhanov A, Burgess SC, Cooksey AM, Castoe TA, Crawford NG, Densmore LD, Drew JC, Edwards SV, Faircloth BC, Fujita MK, Greenwold MJ, Hoffmann FG, Howard JM, Iguchi T, Janes DE, Khan SY, Kohno S, de Koning APJ, Lance SL, McCarthy FM, McCormack JE, et al.: Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 2012, 13:415.
  • [41]Taplin LE, Grigg GC: Salt glands in the tongue of the estuarine crocodile, Crocodylus porosus. Science 1981, 212:1045-1047.
  • [42]Lumpkin EA, Caterina MJ: Mechanisms of sensory transduction in the skin. Nature 2007, 445:858-865.
  • [43]Abel JH, Ellis RA: Histochemical and electron microscopic observations on the salt secreting lacrymal glands of marine turtles. Am J Anat 1966, 118:337-357.
  • [44]Belfry CS, Cowan FB: Peptidergic and adrenergic innervation of the lachrymal gland in the euryhaline turtle, Malaclemys terrapin. J Exp Zool 1995, 273:363-375.
  • [45]Cramp RL, Hudson NJ, Holmberg A, Holmgren S, Franklin CE: The effects of saltwater acclimation on neurotransmitters in the lingual salt glands of the estuarine crocodile, Crocodylus porosus. Regul Pept 2007, 140:55-64.
  • [46]Verzé L, Viglietti-Panzica C, Maurizo S, Sica M, Panzica G: Distribution of GAP-43 nerve fibers in the skin of the adult human hand. Anat Rec A Discov Mol Cell Evol Biol 2003, 272:467-473.
  • [47]Gendek-Kubiak H, Kmieć BL: Immunolocalization of CGRP, NPY and PGP 9.5 in guinea pig skin. Folia Morphol 2004, 63:115-117.
  • [48]Iggo A, Andres KH: Morphology of cutaneous receptors. Annu Rev Neurosci 1982, 5:1-31.
  • [49]Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A: TRPV1 is activated by both acidic and basic pH. J Neurosci 2009, 29:153-158.
  • [50]Cao X, Yang F, Zheng J, Wang K: Intracellular proton-mediated activation of TRPV3 channels accounts for the exfoliation effect of α-hydroxyl acids on keratinocytes. J Biol Chem 2012, 287:25905-25916.
  • [51]Mazzotti FJ, Dunson WA: Osmoregulation in crocodilians. Amer Zool 1989, 29:903-920.
  • [52]The Reptile Database. [http://reptile-database.org webcite]
  • [53]Taplin LE: Osmoregulation in crocodilians. Biol Rev 1988, 63:333-377.
  • [54]Taplin LE, Grigg GC: Historical zoogeography of the eusuchian crocodilians: a physiological perspective. Amer Zool 1989, 29:885-901.
  • [55]Fleishman LJ, Howland HC, Howland MJ, Rand AS, Davenport ML: Crocodiles don’t focus underwater. J Comp Physiol A 1988, 163:441-443.
  • [56]Grigg GC, Seebacher F, Beard LA, Morris D: Thermal relations of large crocodiles, Crocodylus porosus, free-ranging in a naturalistic situation. Proc Biol Sci 1998, 265:1793-1799.
  • [57]Lance VA, Elsey RM: Hormonal and metabolic reponses of juvenile alligators to cold shock. J Exp Zool 1999, 283:566-572.
  • [58]Glanville EJ, Seebacher F: Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J Exp Biol 2006, 209:4869-4877.
  • [59]Lang JW: Crocodilian Thermal Selection. In Wildlife Management: Crocodiles and Alligators. Edited by Webb GJW, Manolis SC, Whitehead PJ. Chipping Norton, Australia: Surrey Beatty & Sons Pty Ltd; 1987:301-317.
  • [60]Ferrer-Montiel A, Fernández-Carvajal A, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Messeguer A, González-Muñiz R: Advances in modulating thermosensory TRP channels. Expert Opin Ther Pat 2012, 22:999-1017.
  • [61]Seebacher F, Murray SA: Transient receptor potential ion channels control thermoregulatory behavior in reptiles. PLoS One 2007, 2:e281.
  • [62]Lingueglia E: Acid-sensing ion channels in sensory perception. J Biol Chem 2007, 282:17325-17329.
  • [63]Garrison SR, Dietrich A, Stucky CL: TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 2012, 107:913-922.
  • [64]Andres KH, von Düring M, Iggo A, Proske U: The anatomy and fine structure of the echidna Tachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors. Anat Embryol 1991, 184:371-393.
  • [65]Catania KC: Ultrastructure of the Eimer’s organ of the star-nosed mole. J Comp Neurol 1996, 365:343-354.
  • [66]Gentle MJ, Breward J: The bill tip organ of the chicken (Gallus gallus var. domesticus). J Anat 1986, 145:79-85.
  • [67]Ananjeva NB, Dilmuchamedov ME, Matveyeva TN: The skin sense organs of some iguanian lizards. J Herpetol 1991, 25:186-199.
  • [68]Hiller U: Structure and position of receptors within scales bordering the toes of gekkonids. Cell Tissue Res 1977, 177:325-330.
  • [69]Kenton B, Kruger L, Woo M: Two classes of slowly adapting mechanoreceptor fibres in reptile cutaneous nerve. J Physiol 1971, 212:21-44.
  • [70]Tosini G: The pineal complex of reptiles: physiological and behavioral roles. Ethol Ecol Evol 1997, 9:313-333.
  • [71]Gopalakrishnakone P: Light and scanning electron microscopic study of the pit organ of the reticulated python, Python reticulatus. The Snake 1984, 16:33-42.
  • [72]Nagai T, Koyama H, Hoff KS, Hillyard SD: Desert toads discriminate salt taste with chemosensory function of the ventral skin. J Comp Neurol 1999, 408:125-1365.
  • [73]Peaker M, Linzell JL: Salt glands in birds and reptiles. Cambridge, UK: Cambridge University Press; 2009.
  文献评价指标  
  下载次数:19次 浏览次数:26次