期刊论文详细信息
Journal of Biomedical Science
Identification and functional analysis of a new putative caveolin-3 variant found in a patient with sudden unexplained death
Salvatore Amoroso1  Adriano Tagliabracci1  Santo Gratteri2  Mauro Pesaresi1  Federica Alessandrini1  Annamaria Assunta Nasti1  Vincenzo Lariccia1 
[1] Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Ancona, Italy;Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
关键词: ERKs;    Sudden cardiac death;    Caveolin-3;   
Others  :  1137630
DOI  :  10.1186/1423-0127-21-58
 received in 2014-01-10, accepted in 2014-06-03,  发布年份 2014
PDF
【 摘 要 】

Background

Sudden cardiac death (SCD) is the clinical outcome of a lethal arrhythmia that can develop on the background of unrecognized channelopathies or cardiomyopathies. Several susceptibility genes have been identified for the congenital forms of these cardiac diseases, including caveolin-3 (Cav-3) gene. In the heart Cav-3 is the main component of caveolae, plasma membrane domains that regulate multiple cellular processes highly relevant for cardiac excitability, such as trafficking, calcium homeostasis, signal transduction and cellular response to injury. Here we characterized a new putative Cav-3 variant, Cav-3 V82I, found in a patient with SCD.

Results

In heterologous systems Cav-3 V82I was expressed at significantly higher level than Cav-3 WT and accumulated within the cells. Cells expressing Cav-3 V82I exhibited a decreased activation of extracellular-signal-regulated kinases (ERKs) and were more vulnerable to sub-lethal osmotic stress.

Conclusion

Considering that abnormal loss of myocytes can play a mechanistic role in lethal cardiac diseases, we suggest that the detrimental effect of Cav-3 V82I variant on cell viability may participate in determining the susceptibility to cardiac death.

【 授权许可】

   
2014 Lariccia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150317111218945.pdf 1717KB PDF download
Figure 9. 85KB Image download
Figure 8. 37KB Image download
Figure 7. 16KB Image download
Figure 6. 47KB Image download
Figure 5. 56KB Image download
Figure 4. 28KB Image download
Figure 3. 21KB Image download
Figure 2. 20KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Tester DJ, Ackerman MJ: The molecular autopsy: should the evaluation continue after the funeral? Pediatr Cardiol 2012, 33:461-470.
  • [2]Tang Y, Stahl-Herz J, Sampson BA: Molecular diagnostics of cardiovascular diseases in sudden unexplained death. Cardiovasc Pathol 2014, 23:1-4.
  • [3]Shimizu W: Update of diagnosis and management of inherited cardiac arrhythmias. Circ J 2013, 77:2867-2872.
  • [4]Lombardi R: Genetics and sudden death. Curr Opin Cardiol 2013, 28:272-281.
  • [5]Shah M, Akar FG, Tomaselli GF: Molecular basis of arrhythmias. Circulation 2005, 112:2517-2529.
  • [6]Tester DJ, Ackerman MJ: Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 2011, 123:1021-1037.
  • [7]Marian AJ: Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol 2002, 17:242-252.
  • [8]Arad M, Seidman JG, Seidman CE: Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet 2002, 11:2499-2506.
  • [9]Zhang T, Yong SL, Drinko JK, Popović ZB, Shryock JC, Belardinelli L, Wang QK: LQTS mutation N1325S in cardiac sodium channel gene SCN5A causes cardiomyocyte apoptosis, cardiac fibrosis and contractile dysfunction in mice. Int J Cardiol 2011, 147:239-245.
  • [10]Feuerstein GZ, Young PR: Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovasc Res 2000, 45:560-569.
  • [11]James TN, St Martin E, Willis PW III, Lohr TO: Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus node, and internodal pathways. Circulation 1996, 93:1424-1438.
  • [12]Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA: Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 2006, 114:2104-2112.
  • [13]Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, Ackerman MJ: Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 2007, 4:161-166.
  • [14]Hayashi T, Arimura T, Ueda K, Shibata H, Hohda S, Takahashi M, Hori H, Koga Y, Oka N, Imaizumi T, Yasunami M, Kimura A: Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 2004, 313:178-184.
  • [15]Traverso M, Gazzerro E, Assereto S, Sotgia F, Biancheri R, Stringara S, Giberti L, Pedemonte M, Wang X, Scapolan S, Pasquini E, Donati MA, Zara F, Lisanti MP, Bruno C, Minetti C: Caveolin-3 T78M and T78K missense mutations lead to different phenotypes in vivo and in vitro. Lab Invest 2008, 88:275-283.
  • [16]Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F: Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 1998, 18:365-368.
  • [17]Kubisch C, Schoser BG, von Düring M, Betz RC, Goebel HH, Zahn S, Ehrbrecht A, Aasly J, Schroers A, Popovic N, Lochmüller H, Schröder JM, Brüning T, Malin JP, Fricke B, Meinck HM, Torbergsen T, Engels H, Voss B, Vorgerd M: Homozygous mutations in caveolin-3 cause a severe form of rippling muscle disease. Ann Neurol 2003, 53:512-520.
  • [18]Vorgerd M, Ricker K, Ziemssen F, Kress W, Goebel HH, Nix WA, Kubisch C, Schoser BG, Mortier W: A sporadic case of rippling muscle disease caused by a de novo caveolin-3 mutation. Neurology 2001, 57:2273-2277.
  • [19]Gazzerro E, Sotgia F, Bruno C, Lisanti MP, Minetti C: Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet 2010, 18:137-145.
  • [20]Bastiani M, Parton RG: Caveolae at a glance. J Cell Sci 2010, 123:3831-3836.
  • [21]Sens P, Turner MS: Budded membrane microdomains as tension regulators. Phys Rev E Stat Nonlin Soft Matter Phys 2006, 73:031918.
  • [22]Smythe GM, Rando TA: Altered caveolin-3 expression disrupts PI(3) kinase signaling leading to death of cultured muscle cells. Exp Cell Res 2006, 312:2816-2825.
  • [23]Gervasio OL, Phillips WD, Cole L, Allen DG: Caveolae respond to cell stretch and contribute to stretch-induced signaling. J Cell Sci 2011, 124:3581-3590.
  • [24]Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P: Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011, 144:402-413.
  • [25]Harvey RD, Calaghan SC: Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. J Mol Cell Cardiol 2012, 52:366-375.
  • [26]Parton RG, del Pozo MA: Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 2013, 14:98-112.
  • [27]Corrotte M, Almeida PE, Tam C, Castro-Gomes T, Fernandes MC, Millis BA, Cortez M, Miller H, Song W, Maugel TK, Andrews NW: Caveolae internalization repairs wounded cells and muscle fibers. Elife 2013, 2:e00926.
  • [28]Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP: Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 1998, 428:205-211.
  • [29]Das M, Das DK: Lipid raft in cardiac health and disease. Curr Cardiol Rev 2009, 5:105-111.
  • [30]Mebratu Y, Tesfaigzi Y: How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 2009, 8:1168-1175.
  • [31]Matsuda S, Kawasaki H, Moriguchi T, Gotoh Y, Nishida E: Activation of protein kinase cascades by osmotic shock. J Biol Chem 1995, 270:12781-12786.
  • [32]Castaldo P, Magi S, Gaetani S, Cassano T, Ferraro L, Antonelli T, Amoroso S, Cuomo V: Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 increases glutamate uptake through overexpression of GLT1 and EAAC1 glutamate transporter subtypes in rat frontal cerebral cortex. Neuropharmacology 2007, 53:369-378.
  • [33]Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, Knight RA, Croce CM, Melino G: The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci U S A 2006, 103:12753-12758.
  • [34]Pol A, Martin S, Fernández MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG: Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 2005, 16:2091-2105.
  • [35]Galbiati F, Volonte D, Minetti C, Chu JB, Lisanti MP: Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of LGMD-1C caveolin-3 mutants within the golgi complex. J Biol Chem 1999, 274:25632-25641.
  • [36]Sotgia F, Woodman SE, Bonuccelli G, Capozza F, Minetti C, Scherer PE, Lisanti MP: Phenotypic behavior of caveolin-3 R26Q, a mutant associated with hyperCKemia, distal myopathy, and rippling muscle disease. Am J Physiol Cell Physiol 2003, 285:C1150-1160.
  • [37]Magi S, Castaldo P, Carrieri G, Scorziello A, Di Renzo G, Amoroso S: Involvement of Na + -Ca2+ exchanger in intracellular Ca2+ increase and neuronal injury induced by polychlorinated biphenyls in human neuroblastoma SH-SY5Y cells. J Pharmacol Exp Ther 2005, 315:291-296.
  • [38]Amoroso S, De Maio M, Russo GM, Catalano A, Bassi A, Montagnani S, Renzo GD, Annunziato L: Pharmacological evidence that the activation of the Na(+)-Ca2+ exchanger protects C6 glioma cells during chemical hypoxia. Br J Pharmacol 1997, 121:303-309.
  • [39]Martin S, Parton RG: Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006, 7:373-378.
  • [40]Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG: A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001, 152:1057-1070.
  • [41]Galbiati F, Volonte D, Minetti C, Bregman DB, Lisanti MP: Limb-girdle muscular dystrophy (LGMD-1C) mutants of caveolin-3 undergo ubiquitination and proteasomal degradation. Treatment with proteasomal inhibitors blocks the dominant negative effect of LGMD-1C mutanta and rescues wild-type caveolin-3. J Biol Chem 2000, 275:37702-37711.
  • [42]Hebert DN, Molinari M: In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007, 87:1377-1408.
  • [43]Ratajczak P, Damy T, Heymes C, Oliviéro P, Marotte F, Robidel E, Sercombe R, Boczkowski J, Rappaport L, Samuel JL: Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 2003, 57:358-369.
  • [44]Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B, Jelicks LA, Kitsis RN, Christ GJ, Factor SM, Tanowitz HB, Lisanti MP: Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 2002, 277:38988-38997.
  • [45]Brosnan JT, Brosnan ME: Branched-chain amino acids: enzyme and substrate regulation. J Nutr 2006, 136:207S-211S.
  • [46]Mercier I, Jasmin JF, Pavlides S, Minetti C, Flomenberg N, Pestell RG, Frank PG, Sotgia F, Lisanti MP: Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Lab Invest 2009, 89:614-623.
  • [47]Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG: Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1999, 1:98-105.
  • [48]Gratton JP, Bernatchez P, Sessa WC: Caveolae and caveolins in the cardiovascular system. Circ Res 2004, 94:1408-14017.
  • [49]Rose BA, Force T, Wang Y: Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010, 90:1507-1546.
  • [50]James TN: Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation 1994, 90:556-573.
  • [51]Nerheim P, Krishnan SC, Olshansky B, Shivkumar K: Apoptosis in the genesis of cardiac rhythm disorders. Cardiol Clin 2001, 19:155-163.
  • [52]Smythe GM, Eby JC, Disatnik MH, Rando TA: A caveolin-3 mutant that causes limb girdle muscular dystrophy type 1C disrupts Src localization and activity and induces apoptosis in skeletal myotubes. J Cell Sci 2003, 116:4739-4749.
  • [53]Pott C, Eckardt L, Goldhaber JI: Triple threat: the Na+/Ca2+ exchanger in the pathophysiology of cardiac arrhythmia, ischemia and heart failure. Curr Drug Targets 2011, 12:737-747.
  • [54]Camors E, Charue D, Trouvé P, Monceau V, Loyer X, Russo-Marie F, Charlemagne D: Association of annexin A5 with Na+/Ca2+ exchanger and caveolin-3 in non-failing and failing human heart. J Mol Cell Cardiol 2006, 40:47-55.
  • [55]Vaidyanathan R, Vega AL, Song C, Zhou Q, Tan BH, Berger S, Makielski JC, Eckhardt LL: The interaction of Caveolin 3 with the inward rectifier channel Kir2.1, physiology and pathology related to LQT9. J Biol Chem 2013, 288:17427-17480.
  • [56]Hedley PL, Kanters JK, Dembic M, Jespersen T, Skibsbye L, Aidt FH, Eschen O, Graff C, Behr ER, Schlamowitz S, Corfield V, McKenna WJ, Christiansen M: The role of CAV3 in long QT syndrome: clinical and functional assessment of a Caveolin-3/Kv11.1 double Heterozygote versus Caveolin-3 single heterozygote. Circ Cardiovasc Genet 2013, 6:452-461.
  • [57]Cheng J, Valdivia CR, Vaidyanathan R, Balijepalli RC, Ackerman MJ, Makielski JC: Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J Mol Cell Cardiol 2013, 61:102-110.
  文献评价指标  
  下载次数:2次 浏览次数:4次