期刊论文详细信息
Journal of Negative Results in Biomedicine
Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons
Mark J Zylka2  Joseph E Rittiner2  Brendan J Fitzpatrick2  Samuel B Snider2  Jaeda C Coutinho-Budd1 
[1] Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;Department of Cell Biology & Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NRB 5109D, CB #7545, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
关键词: Dorsal root ganglia;    FKBP12;    Inp54p;    Rapamycin;    PIP2;    Phosphatidylinositol 4,5-bisphosphate;   
Others  :  812424
DOI  :  10.1186/1477-5751-12-13
 received in 2013-05-30, accepted in 2013-09-05,  发布年份 2013
PDF
【 摘 要 】

Background

Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons.

Results

We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12.

Conclusions

Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.

【 授权许可】

   
2013 Coutinho-Budd et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709084011362.pdf 1819KB PDF download
Figure 8. 85KB Image download
Figure 7. 118KB Image download
Figure 6. 166KB Image download
Figure 5. 157KB Image download
Figure 4. 116KB Image download
Figure 3. 145KB Image download
Figure 2. 197KB Image download
Figure 1. 130KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Crabtree GR, Schreiber SL: Three-part inventions: intracellular signaling and induced proximity. Trends Biochem Sci 1996, 21:418-422.
  • [2]Jin L, Zeng H, Chien S, Otto K, Richard RE, Emery DW, Blau A: In vivo selection using a cell-growth switch. Nature Gen 2000, 26:64-66.
  • [3]Suh B-C, Inoue T, Meyer T, Hille B: Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 2006, 314:1454-1457.
  • [4]Varnai P, Thyagarajan B, Rohacs T, Balla T: Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 2006, 175:377-382.
  • [5]Xu T, Johnson CA, Gestwicki JE, Kumar A: Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization. Nat Protocol 2010, 5:1831-1843.
  • [6]Putyrski M, Schultz C: Switching Heterotrimeric G Protein Subunits with a Chemical Dimerizer. Chem Biol 2011, 18:1126-1133.
  • [7]Majerus PW, Ross TS, Cunningham TW, Caldwell KK, Jefferson AB, Bansai VS: Recent insights in phosphatidylinositol signaling. Cell 1990, 63:459-465.
  • [8]Suh B-C, Hille B: PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 2008, 37:175-195.
  • [9]McLaughlin S, Wang J, Gambhir A, Murray D: PIP(2) and proteins; interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 2002, 31:151-175.
  • [10]Szentpetery Z, Balla A, Kim Y, Lemmon M, Balla T: Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol 2009, 10:67. BioMed Central Full Text
  • [11]Várnai P, Balla T: Visualization of Phosphoinositides That Bind Pleckstrin Homology Domains: Calcium- and Agonist-induced Dynamic Changes and Relationship to Myo-[3H]inositol-labeled Phosphoinositide Pools. J Cell Biol 1998, 143:501-510.
  • [12]Stauffer T, Ahn S, Meyer T: Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 1998, 8:343-346.
  • [13]Gamper N, Shapiro M: Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 2007, 8:921-934.
  • [14]Zaika O, Zhang J, Shapiro M: Combined phosphoinositide and Ca2+ signals mediating receptor specificity toward neuronal Ca2+ channels. J Biol Chem 2011, 286:830-841.
  • [15]Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D: Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 2001, 411:957-962.
  • [16]Prescott E, Julius D: A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 2003, 300:1284-1288.
  • [17]Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T: Dual regulation of TRPV1 by phosphoinositides. J Neurosci 2007, 27:7070-7080.
  • [18]Rohacs T, Thyagarajan B, Lukacs V: Phospholipase C mediated modulation of TRPV1 channels. Mol Neurobiol 2008, 37:153-163.
  • [19]Kim A, Tang Z, Liu Q, Patel K, Maag D, Geng Y, Dong X: Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 2008, 133:475-485.
  • [20]Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE: Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. J Biol Chem 2008, 283:26208-26216.
  • [21]Daniels R, Takashima Y, McKemy D: Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 2009, 284:1570-1582.
  • [22]Sowa N, Street S, Vihko P, Zylka M: Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 2010, 30:10282-10293.
  • [23]McCoy E, Taylor-Blake B, Zylka M: CGRPα-expressing sensory neurons respond to stimuli that evoke sensations of pain and itch. PLoS One 2012, 7:e36355.
  • [24]McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ: Peptidergic CGRPalpha Primary Sensory Neurons Encode Heat and Itch and Tonically Suppress Sensitivity to Cold. Neuron 2013, 78:138-151.
  • [25]Stankunas K, Bayle JH, Gestwicki JE, Lin YM, Wandless TJ, Crabtree GR: Conditional protein alleles using knockin mice and a chemical inducer of dimerization. Mol Cell 2003, 12:1615-1624.
  • [26]Bayle J, Grimley J, Stankunas K, Gestwicki J, Wandless T, Crabtree G: Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol 2006, 13:99-107.
  • [27]Schmidt-Michels M, Edwards P, Oestricher A, Gispen W: Colchicine effect on B-50/GAP43 phosphoprotein localization in rat dorsal root ganglion explants. Neurosci Lett 1989, 97:285-290.
  • [28]Graham F, Smiley J, Russell W, Nairn R: Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977, 36:59-74.
  • [29]Balla T, Várnai P: Visualizing cellular phosphoinositide pools with GFP-fused protein modules. Sci STKE 2002, 125:pl3.
  • [30]Zylka M, Sowa N, Taylor-Blake B, Twomey M, Herrala A, Voikar V, Vihko P: Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 2008, 60:111-122.
  • [31]Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ: Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci 2009, 106:9075-9080.
  • [32]Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999, 21:70-71.
  • [33]Stirling LC, Forlani G, Baker MD, Wood JN, Matthews EA, Dickenson AH, Nassar MA: Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice. Pain 2005, 113:27-36.
  • [34]Madisen L, Zwingman T, Sunkin S, Oh S, Zariwala H, Gu H, Ng L, Palmiter R, Hawrylysz M, Jones A: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2009, 13:151-175.
  • [35]Price T, Rashid M, Millecamps M, Sanoja R, Entrena J, Cervero R: Decreased Nociceptive Sensitization in Mice Lacking the Fragile X Mental Retardation Protein: Role of mGluR1/5 and mTOR. J Neurosci 2007, 27:13959-13967.
  • [36]Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, Lumb BM, Hunt SP: A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 2009, 29:15017-15027.
  • [37]Stankunas K, Bayle JH, Havranek JJ, Wandless TJ, Baker D, Crabtree GR, Gestwicki JE: Rescue of degradation-prone mutants of the FK506-rapamycin binding (FRB) protein with chemical ligands. Chembiochem 2007, 8:1162-1169.
  • [38]Azuma T, Koths K, Flanagan L, Kwiatkowski D: Gelsolin in Complex with Phosphatidylinositol 4,5-Bisphosphate Inhibits Caspase-3 and −9 to Retard Apoptotic Progression. J Biol Chem 2000, 275:3761-3766.
  • [39]Raucher D, Stauffer T, Chen W, Shen K, Guo S, et al.: Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 2000, 100:221-228.
  • [40]Komatsu T, Kukelyansky I, McCaffery JM, Ueno T, Varela LC, Inoue T: Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat Methods 2010, 7:206-208.
  • [41]Karpova AY, Tervo DG, Gray NW, Svoboda K: Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 2005, 48:727-735.
  • [42]Su A, Wiltshire T, Batalov S, Lapp H, Ching K, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al.: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004, 101:6062-6067.
  • [43]Bunting M, Bernstein K, Greer J, Capecchi M, Thomas K: Targeting genes for self-excision in the germ line. Genes & Dev 1999, 13:1524-1528.
  文献评价指标  
  下载次数:30次 浏览次数:6次