期刊论文详细信息
Journal of Translational Medicine
Modeling the transmission of community-associated methicillin-resistant Staphylococcus aureus: a dynamic agent-based simulation
Diane S Lauderdale4  Samantha J Eells2  Loren G Miller2  Jocelyn R Wilder4  James A Evans8  Philip Schumm4  Robert S Daum5  Michael Z David4  Duane T Wegener6  Vanja M Dukic1  Nicholson Collier7  Michael J North3  Charles M Macal3 
[1] Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309, USA;Harbor-UCLA Medical Center, Division of Infectious Diseases, Torrance, CA 90509, USA;Computation Institute, University of Chicago, Chicago, IL 60637, USA;Health Studies, University of Chicago, Chicago, IL 60637, USA;Pediatrics, University of Chicago, Chicago, IL 60637, USA;Psychology, Ohio State University, Columbus, OH 43210, USA;Decision and Information Sciences Division, Argonne National Laboratory, 9700 S. Cass Ave., Bldg 221, Argonne, IL 60439, USA;Sociology, University of Chicago, Chicago, IL 60637, USA
关键词: Infectious disease model;    Agent-based model;    MRSA;   
Others  :  813952
DOI  :  10.1186/1479-5876-12-124
 received in 2013-12-30, accepted in 2014-04-08,  发布年份 2014
PDF
【 摘 要 】

Background

Methicillin-resistant Staphylococcus aureus (MRSA) has been a deadly pathogen in healthcare settings since the 1960s, but MRSA epidemiology changed since 1990 with new genetically distinct strain types circulating among previously healthy people outside healthcare settings. Community-associated (CA) MRSA strains primarily cause skin and soft tissue infections, but may also cause life-threatening invasive infections. First seen in Australia and the U.S., it is a growing problem around the world. The U.S. has had the most widespread CA-MRSA epidemic, with strain type USA300 causing the great majority of infections. Individuals with either asymptomatic colonization or infection may transmit CA-MRSA to others, largely by skin-to-skin contact. Control measures have focused on hospital transmission. Limited public health education has focused on care for skin infections.

Methods

We developed a fine-grained agent-based model for Chicago to identify where to target interventions to reduce CA-MRSA transmission. An agent-based model allows us to represent heterogeneity in population behavior, locations and contact patterns that are highly relevant for CA-MRSA transmission and control. Drawing on nationally representative survey data, the model represents variation in sociodemographics, locations, behaviors, and physical contact patterns. Transmission probabilities are based on a comprehensive literature review.

Results

Over multiple 10-year runs with one-hour ticks, our model generates temporal and geographic trends in CA-MRSA incidence similar to Chicago from 2001 to 2010. On average, a majority of transmission events occurred in households, and colonized rather than infected agents were the source of the great majority (over 95%) of transmission events. The key findings are that infected people are not the primary source of spread. Rather, the far greater number of colonized individuals must be targeted to reduce transmission.

Conclusions

Our findings suggest that current paradigms in MRSA control in the United States cannot be very effective in reducing the incidence of CA-MRSA infections. Furthermore, the control measures that have focused on hospitals are unlikely to have much population-wide impact on CA-MRSA rates. New strategies need to be developed, as the incidence of CA-MRSA is likely to continue to grow around the world.

【 授权许可】

   
2014 Macal et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20140710020423923.pdf 2846KB PDF download
Figure 5. 83KB Image download
Figure 4. 49KB Image download
Figure 3. 53KB Image download
Figure 2. 54KB Image download
Figure 1. 218KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lowy FD: Staphylococcus aureus infections. N Engl J Med 1998, 339(8):520-532.
  • [2]Jevons MP: “Celbenin” - resistant Staphylococci. Br Med J 1961, 1(5219):124-125.
  • [3]Barrett FF, McGehee RF, Finland MN: Methicillin-Resistant Staphylococcus aureus at Boston City Hospital — Bacteriologic and Epidemiologic Observation. N Engl J Med 1968, 279:441-448.
  • [4]Chambers HF, Deleo FR: Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009, 7(9):629-641.
  • [5]Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O'Boyle C, Danila RN, Lynfield R: Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 2003, 290(22):2976-2984.
  • [6]Dukic VM, Lauderdale DS, Wilder J, Daum RS, David MZ: Epidemics of community-associated methicillin-resistant Staphylococcus aureus in the United States: a meta-analysis. PLoS One 2013, 8(1):e52722.
  • [7]Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, Leitch CD, Daum RS: Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 1998, 279(8):593-598.
  • [8]David MZ, Daum RS: Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010, 23(3):616-687.
  • [9]Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA: Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 2006, 355(7):666-674.
  • [10]Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK: Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298(15):1763-1771.
  • [11]Chamchod F, Ruan S: Modeling the spread of Methicillin-Resistant Staphylococcus aureus in nursing homes for elderly. PLoS One 2012, 7(1):e29757.
  • [12]Meng Y, Davies R, Hardy K, Hawkey P: The application of agent-based simulation to the modelling of MRSA transmission in hospital. J Simulation 2010, 4:60-67.
  • [13]Barnes S, Golden B, Wasil E: MRSA transmission reduction using agent-based modeling and simulation. INFORMS J Computing 2010, 22(4):635-646.
  • [14]D’Agata E, Webb G, Horn M, Moellering R, Ruan S: modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis 2009, 48(3):274-284.
  • [15]Forrester M, Comm B, Arts B, Pettitt A: Use of stochastic epidemic modeling to quantify transmission rates of colonization with Methicillin‒Resistant Staphylococcus aureus in an intensive care unit. Infect Control Hosp Epidemiol 2005, 26(7):598-606.
  • [16]Hotchkiss J, Strike D, Simonson D, Broccard A, Crooke P: An agent-based and spatially explicit model of pathogen dissemination in the intensive care unit. Crit Care Med 2005, 33(1):168-176.
  • [17]Raboud J, Saskin R, Simor A, Loeb M, Green K, Low D, McGeer A: Modeling transmission of Methicillin-Resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol 2005, 26(7):607-615.
  • [18]Sebille V, Valleron AJ: A computer simulation model for the spread of nosocomial infections caused by multidrug-resistant pathogens. Comput Biomed Res 1997, 30:307-322.
  • [19]Lee B, McGlone S, Wong K, Yilmaz L, Avery T, Song Y, Christie R, Eubank S, Brown S, Epstein JM, Parker J, Burke D, Platt R, Huang S: Modeling the spread of Methicillin-Resistant Staphylococcus aureus (MRSA) outbreaks throughout the hospitals in Orange County, California. Infect Control Hosp Epidemiol 2011, 32(6):562-572.
  • [20]Bootsma MC, Diekmann O, Bonten MJM: Controlling methicillin-resistant Staphylococcus aureus: Quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci 2006, 103:5620-5625.
  • [21]Ke W, Huang SS, Hudson LO, Elkins KR, Nguyen CC, Spratt BG, Murphy CR, Avery TR, Lipsitch M: Patient sharing and population genetic structure of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci 2012, 109(17):6763-6768.
  • [22]Hogea C, VAN Effelterre T, Acosta CJ: A basic dynamic transmission model of Staphylococcus aureus in the US population. Epidemiol Infect 2013, 23:1-11.
  • [23]Cooper BS, Medley GF, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Duckworth G, Lai R, Ebrahim S: Methicillin-resistant Staphylococcus aureus in hospitals and the community: Stealth dynamics and control catastrophes. Proc Natl Acad Sci 2004, 101(27):10223-10228.
  • [24]Wheaton WD, Cajka JC, Chasteen BM, Wagener DK, Cooley PC, Ganapathi L, Roberts DJ, Allpress JL: Synthesized population databases: a US geospatial database for agent-based models. Publication No. MR-0010-0905. North Carolina: RTI Press; 2009.
  • [25]Centers for Disease Control and Prevention (CDC): Methicillin-resistant Staphylococcus aureus infections in correctional facilities–Georgia, California, and Texas, 2001–2003. MMWR Morb Mortal Wkly Rep 2003, 52(41):992-996.
  • [26]Pan ES, Diep BA, Carleton HA, Charlebois ED, Sensabaugh GF, Haller BL, Perdreau-Remington F: Increasing prevalence of methicillin-resistant Staphylococcus aureus infection in California jails. Clin Infect Dis 2003, 37(10):1384-1388. Nov 15
  • [27]David MZ, Mennella C, Mansour M, Boyle-Vavra S, Daum RS: Predominance of methicillin-resistant Staphylococcus aureus among pathogens causing skin and soft tissue infections in a large urban jail: risk factors and recurrence rates. J Clin Microbiol 2008, 46(10):3222-3227.
  • [28]Feld S: The focused organization of social ties. Amer J Sociology 1981, 86(5):1015-1035.
  • [29]Fritz SA, Camins BC, Eisenstein KA, Fritz JM, Epplin EK, Burnham CA, Dukes J, Storch GA: Effectiveness of measures to eradicate Staphylococcus aureus carriage in patients with community-associated skin and soft-tissue infections: a randomized trial. Infect Control Hosp Epidemiol 2011, 32(9):872-880.
  • [30]Miller L, Eells S, Taylor A, David M, Ortiz N, Zychowski D, Kumar N, Cruz D, Boyle-Vavra S, Daum R: Staphylococcus aureus colonization among household contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin Infect Dis 2012, 54(11):1523-1535.
  • [31]Larsson AK, Gustafsson E, Nilsson AC, Odenholt I, Ringberg HK, Melander E: Duration, of methicillin-resistant Staphylococcus aureus colonization after diagnosis: A four-year experience from southern Sweden. Scand J Infect Dis 2011, 43(6–7):456-462. doi: 10.3109/00365548.2011.562530. Epub 2011 Mar 2
  • [32]Ellis MW, Hospenthal DR, Dooley DP, Gray PJ, Murray CK: Natural history of community - acquired methicillin - resistant Staphylococcus aureus colonization and infection in soldiers. Clin Infect Dis 2004, 39(7):971-979.
  • [33]Craig BA, Sendi PP: Estimation of the transition matrix of a discrete-time Markov chain. Health Econ 2002, 11:33-42.
  • [34]Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, Fosheim GE, Jensen BJ, Killgore G, Tenover FC, Kuehnert MJ: Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 2008, 197(9):1226-1234.
  • [35]Hota B, Ellenbogen C, Hayden MK, Aroutcheva A, Rice TW, Weinstein RA: Community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections at a public hospital: Do public housing and incarceration amplify transmission? Arch Intern Med 2007, 167(10):1026-1033.
  • [36]Sargent RG: Verification and validation of simulation models. J Simulation 2012, 7:12-24.
  • [37]Epstein JM: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton: Princeton University Press; 2007.
  • [38]North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P: Complex adaptive systems modeling with Repast Simphony. Complex Adapt Syst Model 2013, 1(1):3. BioMed Central Full Text
  • [39]Collier NT, North MJ: Parallel Agent-based Simulation with Repast for High Performance Computing, Simulation. 2012. Online November 6, 2012, doi:10.1177/0037549712462620
  • [40]Macal CM, North MJ, Collier NT, Dukic VM, Lauderdale DS, David MZ, Daum RS, Shumm P, Daum RS, Evans JA, Wilder JR, Wegener DT: Modeling the Spread of Community-Associated MRSA. In Proc. 2012 Winter Simulation Conf Edited by Laroque C, Himmelspach J, Pasupathy R, Rose O, Uhrmacher AM. 2012. Available at http://www.informs-sim.org/wsc12papers/includes/files/inv214.pdf webcite (accessed June 20, 2013)
  文献评价指标  
  下载次数:10次 浏览次数:14次