期刊论文详细信息
Fluids and Barriers of the CNS
Vascular endothelial growth factor blockade alters magnetic resonance imaging biomarkers of vascular function and decreases barrier permeability in a rat model of lung cancer brain metastasis
Edward A Neuwelt1  Daniel L Schwartz2  Michael A Pagel1  Leslie L Muldoon2  Gregory L Pishko2 
[1] Office of Research and Development, Department of Veterans Affairs Medical Center, Portland, OR, USA;Department of Neurology, Oregon Health & Science University, 3181 Sam Jackson Park Road, L603, Portland, OR 97239-3011, USA
关键词: Drug delivery;    Anti-angiogenic drugs;    Vascular normalization;    Cerebral blood volume;    Tumor model;    Magnetic resonance imaging;    Bevacizumab;    Blood–brain barrier;   
Others  :  1138306
DOI  :  10.1186/2045-8118-12-5
 received in 2014-12-01, accepted in 2015-01-27,  发布年份 2015
PDF
【 摘 要 】

Background

Blockade of vascular endothelial growth factor (VEGF) to promote vascular normalization and inhibit angiogenesis has been proposed for the treatment of brain metastases; however, vascular normalization has not been well-characterized in this disease. We investigated the effect of treatment with bevacizumab anti-VEGF antibody on magnetic resonance imaging (MRI) biomarkers of brain tumor vascular characteristics in comparison to small molecule delivery in a rat model of human lung cancer brain metastasis.

Methods

Athymic rats with A549 human lung adenocarcinoma intracerebral xenografts underwent MRI at 11.75 T before and one day after treatment with bevacizumab (n = 8) or saline control (n = 8) to evaluate tumor volume, free water content (edema), blood volume and vascular permeability (Ktrans). One day later, permeability to 14C-aminoisobutyric acid (AIB) was measured in tumor and brain to assess the penetration of a small drug-like molecule.

Results

In saline control animals, tumor volume, edema and permeability increased over the two day assessment period. Compared to controls, bevacizumab treatment slowed the rate of tumor growth (P = 0.003) and blocked the increase in edema (P = 0.033), but did not alter tumor blood volume. Bevacizumab also significantly reduced Ktrans (P = 0.033) and AIB passive permeability in tumor (P = 0.04), but not to peritumoral tissue or normal brain. Post-treatment Ktrans correlated with AIB levels in the bevacizumab-treated rats but not in the saline controls.

Conclusions

The correlation of an MRI biomarker for decreased vascular permeability with decreased AIB concentration in tumor after antiangiogenic treatment suggests that bevacizumab partially restored the normal low permeability characteristics of the blood–brain barrier in a model of human lung cancer brain metastasis.

【 授权许可】

   
2015 Pishko et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150319040342190.pdf 3255KB PDF download
Figure 5. 102KB Image download
Figure 4. 103KB Image download
Figure 3. 81KB Image download
Figure 2. 76KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE: Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 2004, 22:2865-72.
  • [2]Castrucci WA, Knisely JP: An update on the treatment of CNS metastases in small cell lung cancer. Cancer J 2008, 14:138-46.
  • [3]Zimmermann S, Dziadziuszko R, Peters S: Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases. Cancer Treatment Rev 2014, 40:716-22.
  • [4]Huang H, Held-Feindt J, Buhl R, Mehdorn HM, Mentlein R: Expression of VEGF and its receptors in different brain tumors. Neurol Res 2005, 27:371-7.
  • [5]Ferrara N: VEGF as a therapeutic target in cancer. Oncology 2005, 69(Suppl. 3):11-6.
  • [6]Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999, 284:1994-8.
  • [7]Jain RK: Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 2005, 19:7-16.
  • [8]Peak SJ, Levin VA: Role of bevacizumab therapy in the management of glioblastoma. Cancer Manag Res 2010, 2:97-104.
  • [9]Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, et al.: Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007, 13:1253-9.
  • [10]Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, et al.: A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014, 370:699-708.
  • [11]De Braganca KC, Janjigian YY, Azzoli CG, Kris MG, Pietanza MC, Nolan CP, Omuro AM, Holodny AI, Lassman AB: Efficacy and safety of bevacizumab in active brain metastases from non-small cell lung cancer. J Neurooncol 2010, 100:443-7.
  • [12]Socinski MA, Langer CJ, Huang JE, Kolb MM, Compton P, Wang L, Akerley W: Safety of bevacizumab in patients with non–small-cell lung cancer and brain metastases. J Clin Oncol 2009, 27:5255-61.
  • [13]Zustovich F, Ferro A, Lombardi G, Zagonel V, Fiduccia P, Farina P: Bevacizumab as front-line treatment of brain metastases from solid tumors: a case series. Anticancer Res 2013, 33:4061-5.
  • [14]Pope WB, Young JR, Ellingson BM: Advances in MRI assessment of gliomas and response to anti-VEGF therapy. Curr Neurol Neurosci Rep 2011, 11:336-44.
  • [15]Abbas Z, Gras V, Möllenhoff K, Keil F, Oros-Peusquens AM, Shah NJ: Analysis of proton-density bias corrections based on T1 measurement for robust quantification of water content in the brain at 3 Tesla. Magn Reson Med 2014, 72:1735-45.
  • [16]Kamman RL, Go KG, Brouwer W, Berendsen HJ: Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, proteinconcentration, and temperature. Magn Reson Med 1988, 6:265-74.
  • [17]Gahramanov S, Muldoon LL, Li X, Neuwelt EA: Improved perfusion MRI assessment of intracerebral tumor blood volume and antiangiogenic therapy efficacy in a rat model using ferumoxytol. Radiology 2011, 261:796-804.
  • [18]Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, Coons SW, Nakaji P, Yeh RF, Debbins J, Heiserman JE: Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009, 30:552-8.
  • [19]Li X, Rooney WD, Várallyay CG, Gahramanov S, Muldoon LL, Goodman JA, Tagge IJ, Selzer AH, Pike MM, Neuwelt EA, Springer CSJ: Dynamic-contrast-enhanced-MRI with extravasating contrast reagent: rat cerebral glioma blood volume determination. J Magn Reson 2010, 206:190-9.
  • [20]Roberts HC, Roberts TP, Brasch RC, Dillon WP: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000, 21:891-9.
  • [21]Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, et al.: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999, 10:223-32.
  • [22]Thompson EM, Frenkel EP, Neuwelt EA: The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology 2011, 76:87-93.
  • [23]Varallyay CG, Nesbit E, Fu R, Gahramanov S, Moloney B, Earl E, Muldoon LL, Li X, Rooney WD, Neuwelt EA: High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J Cereb Blood Flow Metab 2013, 33:780-6.
  • [24]Fine HA: Bevacizumab in glioblastoma–still much to learn. N Engl J Med 2014, 370:764-5.
  • [25]Hein M, Graver S: Tumor cell response to bevacizumab single agent therapy in vitro. Cancer Cell Int 2013, 13:94. BioMed Central Full Text
  • [26]Fokas E, Steinbach JP, Rodel C: Biology of brain metastases and novel targeted therapies: time to translate the research. Biochim Biophys Acta 1835, 2013:61-75.
  • [27]Kodack DP, Chung E, Yamashita H, Incio J, Duyverman AM, Song Y, Farrar CT, Huang Y, Ager E, Kamoun W, et al.: Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proc Natl Acad Sci U S A 2012, 109:E3119-3127.
  • [28]Muldoon LL, Gahramanov S, Li X, Marshall DJ, Kraemer DF, Neuwelt EA: Dynamic magnetic resonance imaging assessment of vascular targeting agent effects in rat intracerebral tumor models. Neuro Oncol 2011, 13:51-60.
  • [29]JuanYin J, Tracy K, Zhang L, Munasinghe J, Shapiro E, Koretsky A, Kelly K: Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clin Exp Metastasis 2009, 26:403-414.
  • [30]Varallyay CG, Muldoon LL, Gahramanov S, Wu YJ, Goodman JA, Li X, Pike MM, Neuwelt EA: Dynamic MRI using iron oxide nanoparticles to assess early vascular effects of antiangiogenic versus corticosteroid treatment in a glioma model. J Cereb Blood Flow Metab 2009, 29:853-60.
  • [31]Vecht CJ, Hovestadt A, Verbiest HB, van Vliet JJ, van Putten WL: Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day. Neurology 1994, 44:675-80.
  • [32]McSheehy PMJ, Weidensteiner C, Cannet C, Ferretti S, Laurent D, Ruetz S, Stumm M, Allegrini PR: Quantified tumor t1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability. Clin Cancer Res 2010, 16:212-25.
  • [33]Jokivarsi KT, Niskanen JP, Michaeli S, Gröhn HI, Garwood M, Kauppinen RA, Gröhn OH: Quantitative assessment of water pools by T 1 rho and T 2 rho MRI in acute cerebral ischemia of the rat. J Cereb Blood Flow Metab 2009, 29:206-16.
  • [34]Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004, 64:3731-6.
  • [35]Kienast Y, von Baumgarten L, Fuhrmann M, Klinker WEF, Goldbrunner R, Herms J, Winkler F: Real-time imaging reveals the single steps of brain metastasis formation. Nature Med 2010, 16:116-23.
  • [36]Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, et al.: Heterogeneous blood–tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 2010, 16:5664-78.
  • [37]Claes A, Wesseling P, Jeuken J, Maass C, Heerschap A, Leenders WP: Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 2008, 7:71-8.
  • [38]Brandsma D, van den Bent MJ: Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009, 22:633-8.
  文献评价指标  
  下载次数:37次 浏览次数:15次