Epigenetics & Chromatin | |
ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes | |
Peggy J Farnham3  Victor X Jin2  Zhenqing Ye2  Yao Wang2  Lijing Yao3  Adam Blattler1  | |
[1] Genetics Graduate Group, University of California-Davis, Davis, CA, 95616, USA;Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA;Department of Biochemistry & Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA | |
关键词: Transcriptional regulation; Epigenetics; Transcription factor binding; Histone modifications; Zinc finger proteins; DNA methylation; | |
Others : 811000 DOI : 10.1186/1756-8935-6-13 |
|
received in 2013-03-18, accepted in 2013-04-16, 发布年份 2013 | |
【 摘 要 】
Background
DNA methylation and repressive histone modifications cooperate to silence promoters. One mechanism by which regions of methylated DNA could acquire repressive histone modifications is via methyl DNA-binding transcription factors. The zinc finger protein ZBTB33 (also known as Kaiso) has been shown in vitro to bind preferentially to methylated DNA and to interact with the SMRT/NCoR histone deacetylase complexes. We have performed bioinformatic analyses of Kaiso ChIP-seq and DNA methylation datasets to test a model whereby binding of Kaiso to methylated CpGs leads to loss of acetylated histones at target promoters.
Results
Our results suggest that, contrary to expectations, Kaiso does not bind to methylated DNA in vivo but instead binds to highly active promoters that are marked with high levels of acetylated histones. In addition, our studies suggest that DNA methylation and nucleosome occupancy patterns restrict access of Kaiso to potential binding sites and influence cell type-specific binding.
Conclusions
We propose a new model for the genome-wide binding and function of Kaiso whereby Kaiso binds to unmethylated regulatory regions and contributes to the active state of target promoters.
【 授权许可】
2013 Blattler et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140709055005308.pdf | 2885KB | download | |
Figure 12. | 63KB | Image | download |
Figure 11. | 40KB | Image | download |
Figure 10. | 33KB | Image | download |
Figure 9. | 37KB | Image | download |
Figure 8. | 67KB | Image | download |
Figure 7. | 67KB | Image | download |
Figure 6. | 30KB | Image | download |
Figure 5. | 54KB | Image | download |
Figure 4. | 67KB | Image | download |
Figure 3. | 33KB | Image | download |
Figure 2. | 30KB | Image | download |
Figure 1. | 39KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
【 参考文献 】
- [1]Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13:484-492.
- [2]Li G, Reinberg D: Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 2011, 21:175-186.
- [3]Statham AL, Robinson MD, Song JZ, Coolen MW, Stirzaker C, Clark SJ: Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res 2012, 22:1120-1127.
- [4]Brinkman AB, Gu H, Bartels SJJ, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg HG: Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 2012, 22:1128-1138.
- [5]Komashko VM, Farnham PJ: 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 2010, 5:229-240.
- [6]Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee B-K, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Dunham I: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
- [7]Filion GJP, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez P-A: A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 2006, 26:169-181.
- [8]Prokhortchouk A, Hendrich B, Jørgensen H, Ruzov A, Wilm M, Georgiev G, Bird A, Prokhortchouk E: The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 2001, 15:1613-1618.
- [9]Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A: The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res 2002, 30:2911-2919.
- [10]Yoon H-G, Chan DW, Reynolds AB, Qin J, Wong J: N-CoR mediates DNA methylation-dependent repression through a methyl CpG-binding protein Kaiso. Mol Cell 2003, 12:723-734.
- [11]Blahnik KR, Dou L, O’geen H, McPhillips T, Xu X, Cao AR, Iyengar S, Nicolet CM, Ludäscher B, Korf I, Farnham PJ: Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res 2010, 38:e13.
- [12]Blahnik KR, Dou L, Echipare L, Iyengar S, O’geen H, Sanchez E, Zhao Y, Marra MA, Hirst M, Costello JF, Korf I, Farnham PJ: Characterization of the contradictory chromatin signatures at the 3′ exons of zinc finger genes. PLoS One 2011, 6:e17121.
- [13]Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM: ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 2012, 22:1813-1831.
- [14]Li Q, Brown JB, Huang H, Bickel PJ: Measuring reproducibility of high-throughput experiments. The Annals of Applied Statistics 2011, 5:1752-1779.
- [15]Lopes EC, Valls E, Figueroa ME, Mazur A, Meng F-G, Chiosis G, Laird PW, Schreiber-Agus N, Greally JM, Prokhortchouk E, Melnick A: Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res 2008, 68:7258-7263.
- [16]Donaldson NS, Nordgaard CL, Pierre CC, Kelly KF, Robinson SC, Swystun L, Henriquez R, Graham M, Daniel JM: Kaiso regulates Znf131-mediated transcriptional activation. Exp Cell Res 2010, 316:1692-1705.
- [17]Kelly KF, Otchere AA, Graham M, Daniel JM: Nuclear import of the BTB/POZ transcriptional regulator Kaiso. J Cell Sci 2004, 117:6143-6152.
- [18]Raghav SK, Waszak SM, Krier I, Gubelmann C, Isakova A, Mikkelsen TS, Deplancke B: Integrative genomics identifies the corepressor SMRT as a gatekeeper of adipogenesis through the transcription factors C/EBPβ and KAISO. Mol Cell 2012, 46:335-350.
- [19]Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei C-L, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012, 148:84-98.
- [20]Lee B-K, Iyer VR: Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem 2012, 287:30906-30913.
- [21]Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA: Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 2012, 22:2497-2506.
- [22]Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010, 38:576-589.
- [23]Ruzov A, Savitskaya E, Hackett JA, Reddington JP, Prokhortchouk A, Madej MJ, Chekanov N, Li M, Dunican DS, Prokhortchouk E, Pennings S, Meehan RR: The non-methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development. Development 2009, 136:729-738.
- [24]Defossez PA: The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J Biol Chem 2005, 280:43017-43023.
- [25]Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y, Rando OJ, Birney E, Myers RM, Noble WS, Snyder M, Weng Z: Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 2012, 22:1798-1812.
- [26]Buck-Koehntop BA, Martinez-Yamout MA, Dyson HJ, Wright PE: Kaiso uses all three zinc fingers and adjacent sequence motifs for high affinity binding to sequence-specific and methyl-CpG DNA targets. FEBS Lett 2012, 586:734-739.
- [27]Bartels SJJ, Spruijt CG, Brinkman AB, Jansen PWTC, Vermeulen M, Stunnenberg HG: A SILAC-based screen for Methyl-CpG binding proteins identifies RBP-J as a DNA methylation and sequence-specific binding protein. PLoS One 2011, 6:e25884.
- [28]Buck-Koehntop BA, Stanfield RL, Ekiert DC, Martinez-Yamout MA, Dyson HJ, Wilson IA, Wright PE: Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc Natl Acad Sci USA 2012, 109:15229-15234.
- [29]Lan X, Bonneville R, Apostolos J, Wu W, Jin VX: W-ChIPeaks: a comprehensive web application tool for processing ChIP-chip and ChIP-seq data. Bioinformatics 2011, 27:428-430.
- [30]Rabinovich A, Jin VX, Rabinovich R, Xu X, Farnham PJ: E2F in vivo binding specificity: comparison of consensus versus nonconsensus binding sites. Genome Res 2008, 18:1763-1777.
- [31]Farnham PJ: Insights from genomic profiling of transcription factors. Nat Rev Genet 2009, 10:605-616.
- [32]Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee B-K, Lee K, London D, Lotakis D, Neph S: The accessible chromatin landscape of the human genome. Nature 2012, 489:75-82.
- [33]Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, Widom J, Gilad Y, Pritchard JK: Controls of nucleosome positioning in the human genome. PLoS Genet 2012, 8:e1003036.
- [34]Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell 2007, 128:707-719.
- [35]Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, Trono D: In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 2011, 44:361-372.
- [36]Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC, Bauer C, Münzel M, Wagner M, Müller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Müller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M: Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013, 152:1146-1159.
- [37]Donaldson NS, Pierre CC, Anstey MI, Robinson SC, Weerawardane SM, Daniel JM: Kaiso represses the cell cycle gene cyclin D1 via sequence-specific and methyl-CpG-dependent mechanisms. PLoS One 2012, 7:e50398.
- [38]Liu Y, Zhang X, Blumenthal RM, Cheng X: A common mode of recognition for methylated CpG. Trends Biochem Sci 2013, 38:177-183.