期刊论文详细信息
Epigenetics & Chromatin
CBP binding outside of promoters and enhancers in Drosophila melanogaster
Per Stenberg4  Mattias Mannervik1  Philip A. Cole5  David J. Meyers5  Allison M. Churcher2  Roshan Vaid1  Ann Boija1  Philge Philip3 
[1] Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, 106 91, Sweden;Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden;Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India;Division of CBRN Security and Defence, FOI–Swedish Defence Research Agency, Umeå, Sweden;Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore 21205, MD, USA
关键词: Polycomb response elements;    Insulators;    Gene regulation;    Chromatin structure;    Drosophila melanogaster;    CBP/p300;   
Others  :  1234468
DOI  :  10.1186/s13072-015-0042-4
 received in 2015-08-13, accepted in 2015-11-09,  发布年份 2015
PDF
【 摘 要 】

Background

CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1).

Results

Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin.

Conclusions

We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.

【 授权许可】

   
2015 Philip et al.

【 预 览 】
附件列表
Files Size Format View
20151130040334508.pdf 1254KB PDF download
Fig.5. 43KB Image download
Fig.4. 45KB Image download
Fig.3. 61KB Image download
Fig.2. 35KB Image download
Fig.1. 115KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

【 参考文献 】
  • [1]Bedford DC, Kasper LH, Fukuyama T, Brindle PK. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics. 2010; 5(1):9-15.
  • [2]Wang L, Tang Y, Cole PA, Marmorstein R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol. 2008; 18(6):741-747.
  • [3]Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000; 14(13):1553-1577.
  • [4]Roelfsema JH, Peters DJ. Rubinstein–Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med. 2007; 9(23):1-16.
  • [5]Iyer NG, Özdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004; 23(24):4225-4231.
  • [6]Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013; 153(1):38-55.
  • [7]Holmqvist PH, Boija A, Philip P, Crona F, Stenberg P, Mannervik M. Preferential genome targeting of the CBP co-activator by Rel and Smad proteins in early Drosophila melanogaster embryos. PLoS Genet. 2012; 8(6):e1002769.
  • [8]Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W et al.. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009; 138(5):1019-1031.
  • [9]Rikitake Y, Moran E. DNA-binding properties of the E1A-associated 300 kDa protein. Mol Cell Biol. 1992; 12(6):2826-2836.
  • [10]Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A et al.. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development. 2009; 136(18):3131-3141.
  • [11]Feller C, Forné I, Imhof A, Becker PB. Global and specific responses of the histone acetylome to systematic perturbation. Mol Cell. 2015; 57(3):559-571.
  • [12]Holmqvist PH, Mannervik M. Genomic occupancy of the transcriptional co-activators p300 and CBP. Transcription. 2013; 4(1):18-23.
  • [13]Bodai L, Zsindely N, Gáspár R, Kristó I, Komonyi O, Boros IM. Ecdysone induced gene expression is associated with acetylation of histone H3 lysine 23 in Drosophila melanogaster. PLoS One. 2012; 7(7):e40565.
  • [14]Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009; 459(7243):113-117.
  • [15]McConnell KH, Dixon M, Calvi BR. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development. 2012; 139(20):3880-3890.
  • [16]Smolik S, Jones K. Drosophila dCBP is involved in establishing the DNA replication checkpoint. Mol Cell Biol. 2007; 27(1):135-146.
  • [17]Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD et al.. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007; 39(3):311-318.
  • [18]Nègre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG et al.. A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet. 2010; 6(1):e1000814.
  • [19]Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A et al.. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009; 457(7231):854-858.
  • [20]Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ et al.. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA. 2010; 107(50):21931-21936.
  • [21]Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011; 470(7333):279-283.
  • [22]Zentner GE, Tesar PJ, Scacheri PC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 2011; 21(8):1273-1283.
  • [23]Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet. 2013; 14(12):853-864.
  • [24]Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L et al.. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res. 2010; 38(15):4958-4969.
  • [25]Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML et al.. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 2010; 330(6012):1787-1797.
  • [26]Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 2013; 339(6123):1074-1077.
  • [27]Kvon EZ, Kazmar T, Stampfel G, Yanez-Cuna JO, Pagani M, Schernhuber K et al.. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature. 2014; 512(7512):91-95.
  • [28]Schwartz YB, Kahn TG, Stenberg P, Ohno K, Bourgon R, Pirrotta V. Alternative epigenetic chromatin states of polycomb target genes. PLoS Genet. 2010; 6(1):e1000805.
  • [29]Tie F, Banerjee R, Saiakhova AR, Howard B, Monteith KE, Scacheri PC et al.. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing. Development. 2014; 141(5):1129-1139.
  • [30]Petruk S, Sedkov Y, Smith S, Tillib S, Kraevski V, Nakamura T et al.. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science. 2001; 294(5545):1331-1334.
  • [31]Philip P, Pettersson F, Stenberg P. Sequence signatures involved in targeting the Male-Specific Lethal complex to X-chromosomal genes in Drosophila melanogaster. BMC Genom. 2012; 13:97. BioMed Central Full Text
  • [32]Yáñez-Cuna JO, Arnold CD, Stampfel G, Boryń ŁM, Gerlach D, Rath M et al.. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res. 2014; 24(7):1147-1156.
  • [33]Huang F, Paulson A, Dutta A, Venkatesh S, Smolle M, Abmayr SM et al.. Histone acetyltransferase Enok regulates oocyte polarization by promoting expression of the actin nucleation factor spire. Genes Dev. 2014; 28(24):2750-2763.
  • [34]Schwartz YB, Linder-Basso D, Kharchenko PV, Tolstorukov MY, Kim M, Li HB et al.. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res. 2012; 22(11):2188-2198.
  • [35]Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA et al.. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010; 17(5):471-482.
  • [36]Chopra VS, Cande J, Hong JW, Levine M. Stalled Hox promoters as chromosomal boundaries. Genes Dev. 2009; 23(13):1505-1509.
  • [37]Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A. Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin. 2012; 5(1):1. BioMed Central Full Text
  • [38]Erokhin M, Davydova A, Kyrchanova O, Parshikov A, Georgiev P, Chetverina D. Insulators form gene loops by interacting with promoters in Drosophila. Development. 2011; 138(18):4097-4106.
  • [39]Comet I, Schuettengruber B, Sexton T, Cavalli G. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci USA. 2011; 108(6):2294-2299.
  • [40]Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem. 2010; 79:89-130.
  • [41]Sofueva S, Yaffe E, Chan WC, Georgopoulou D, Vietri Rudan M, Mira-Bontenbal H et al.. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 2013; 32(24):3119-3129.
  • [42]Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S et al.. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma. 2008; 117(1):89-102.
  • [43]Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S et al.. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res. 2009; 37:D555-D559.
  • [44]Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L et al.. The developmental transcriptome of Drosophila melanogaster. Nature. 2011; 471(7339):473-479.
  • [45]Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1-13.
  • [46]Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57.
  • [47]Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998; 95(25):14863-14868.
  • [48]Lilja T, Aihara H, Stabell M, Nibu Y, Mannervik M. The acetyltransferase activity of Drosophila CBP is dispensable for regulation of the Dpp pathway in the early embryo. Dev Biol. 2007; 305(2):650-658.
  • [49]Lilja T, Qi D, Stabell M, Mannervik M. The CBP coactivator functions both upstream and downstream of Dpp/Screw signaling in the early Drosophila embryo. Dev Biol. 2003; 262(2):294-302.
  文献评价指标  
  下载次数:46次 浏览次数:13次