Frontiers in Zoology | |
Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects | |
Johannes Strauß1  Tina E. Trenczek2  Reinhard Lakes-Harlan1  Yvette M. von Bredow2  Christoph-Rüdiger von Bredow2  Konrad Stolz2  | |
[1] AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany;Institute for General and Applied Zoology, Justus-Liebig-Universität Gießen, Gießen, Germany | |
关键词: Defence behaviour; Motoneuron; Neuronal tracing; Stick insect; Defence glands; Neuronal innervation; Neuroanatomy; Insect; | |
Others : 1232728 DOI : 10.1186/s12983-015-0122-0 |
|
received in 2015-04-26, accepted in 2015-10-08, 发布年份 2015 | |
【 摘 要 】
Background
Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects.
Results
In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. These neurons are mainly suboesophageal neurons with one intersegmental neuron located in the prothoracic ganglion. The neuron types are conserved in the species studied, but the combination of neuron types is not identical. In addition, the central nervous system in S. sipylus contains one suboesophageal and one prothoracic neuron type with axons in the intersegmental nerve complex contacting the defence gland.
Conclusions
Axonal tracing shows a very complex innervation pattern of the defence glands of Phasmatodea which contains different neurons in different nerves from two adjacent body segments. The gland size correlates to the size of a neuron soma in the suboesophageal ganglion, which likely controls gland contraction. In P. schultei, the innervation pattern appears simplified to the anterior suboesophageal nerve. Hence, some evolutionary changes are notable in a conserved neuronal network.
【 授权许可】
2015 Stolz et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151116031217771.pdf | 2911KB | download | |
Fig. 10. | 46KB | Image | download |
Fig. 9. | 33KB | Image | download |
Fig. 8. | 29KB | Image | download |
Fig. 7. | 54KB | Image | download |
Fig. 6. | 49KB | Image | download |
Fig. 5. | 57KB | Image | download |
Fig. 4. | 25KB | Image | download |
Fig. 3. | 18KB | Image | download |
Fig. 2. | 90KB | Image | download |
Fig. 1. | 89KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
【 参考文献 】
- [1]Robinson MH. The defensive behaviour of some orthopteroid insects from Panama. Trans Royal Ent Soc Lond. 1969; 121:281-303.
- [2]Edmunds M. Defence in animals: a survey of anti-predator defences. Longman, Harlow; 1974.
- [3]Eisner T. Chemical defense against predation in arthropods. In: Chemical ecology. Sondheimer E, Simeone JB, editors. Academic Press, New York; 1970: p.157-217.
- [4]Gwynne DT. Katydids and bushcrickets: reproductive behavior and evolution of the Tettigoniidae. Ithaca, Comstock; 2001.
- [5]Ruxton GD, Sherratt TN, Speed MP. Avoiding attack. The evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford; 2004.
- [6]Eisner T, Eisner M, Siegler M. Secret weapons. Defenses of insects, spiders, scorpions, and other many-legged creatures. Belknap, Cambridge, Mass; 2005.
- [7]Laurent P, Braekmann J-C, Daloze D. Insect chemical defense. Topics Curr Chem. 2005; 240:167-229.
- [8]Schmidt JO. Defensive behavior. In: Encyclopedia of insects. Resh VH, Carde RT, editors. Academic Press, Burlington; 2009: p.252-7.
- [9]Bedford GO. Biology and ecology of the Phasmatodea. Annu Rev Entomol. 1978; 23:125-49.
- [10]Carlberg U. An analysis of the secondary defence reactions in stick insects (Phasmida). Biol Zentralblatt. 1981; 100:295-303.
- [11]Carlberg U. Phasmida: a biological review (Insecta). Zool Anz. 1986; 216:1-18.
- [12]Tilgner EH. Phasmida (Stick and leaf insects). In: Encyclopedia of insects. Resh VH, Cardé RT, editors. Academic Press, Amsterdam; 2009: p.765-6.
- [13]Grimaldi D, Engel MS. Evolution of the insects. Cambridge University Press, Cambridge; 2005.
- [14]Bradler S. Die Phylogenie der Stab- und Gespenstschrecken (Insecta: Phasmatodea). Species, Phylogeny and Evolution. 2009; 2:1-139.
- [15]Eisner T. Defensive spray of a phasmid insect. Science. 1965; 148:966-8.
- [16]Carlberg U. Chemical defense in Sipyloidea sipylus (Westwood) (Insecta, Phasmida). Zool Anz. 1986; 217:31-8.
- [17]Bouchard P, Hsiung C-C, Yaylayan VA. Chemical analysis of defense secretions of Siyploidea sipylus and their potential use as repellents against rats. J Chem Ecol. 1997; 23:2049-57.
- [18]Conle H. Studies on Neotropical Phasmatodea I: A remarkable new species of Peruphasma Conle & Hennemann, 2002 from Northern Peru (Phasmatodea: Pseudophasmatidae: Pseudophasmatinae). Zootaxa. 2005; 1068:59-68.
- [19]Bein D, Greven H. Anmerkungen zur Abgabe von Wehrsekret und zur Struktur der Wehrdrüsen bei der Stabschrecke Oreophoetes peruana (Phasmatodea). Entomol heute. 2006; 18:55-63.
- [20]Meinwald J, Chadha MS, Hurst JJ, Eisner T. Defense mechanisms of arthropods. 9. Anisomorphal, the secretion of a phasmid insect. Tetrahedron Lett. 1962; 3:29-33.
- [21]Eisner T, Morgan RC, Attygalle AB, Smedley SR, Herath KB, Meinwald J. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J Exp Biol. 1997; 200:2493-500.
- [22]Dossey AT, Walse SS, Rocca JR, Edison AS. Single-insect NMR: a new tool to probe chemical biodiversity. ASC Chem Biol. 2006; 1:511-4.
- [23]Smith RM, Brophy JJ, Cavill GWK, Davies NW. Iridodials and nepetalactone in the defensive secretion of the coconut stick insects, Graeffea crouani. J Chem Ecol. 1979; 5:727-35.
- [24]Chow Y, Lin YM. Actinidine, a defensive secretion of stick insect, Megacrania alpheus Westwood (Orthoptera: Phasmatidae). J Entomol Sci. 1986; 21:97-101.
- [25]Ho H-Y, Chow YS. Chemical identification of defensive secretion of stick insect, Megacrania tsudai Shiraki. J Chem Ecol. 1993; 19:39-46.
- [26]Dossey AT, Walse SS, Conle OV, Edison AS. Parectadial, a monoterpenoid from the defensive spray of Parectatosoma mocquerysi. J Nat Prod. 2007; 70:1335-8.
- [27]Dossey AT, Gottardo M, Whitker JM, Roush WR, Edison AS. Alkyldimethylpyrazines in the defensive spray of Phyllium westwoodii: a first for order Phasmatodea. J Chem Ecol. 2009; 35:861-70.
- [28]Moreno A. Glandulas odoriferas en Paradoxomorpha. Notas Museo De La Plata. 1940; 5:319-23.
- [29]Gangrade GA. The repugnatorial glands of Necroscia sparaxes Westwood (Phasmidae: phasmida). Curr Sci. 1964; 23:717-8.
- [30]Happ GM, Strandberg JD, Happy CM. The terpene-producing glands of a phasmid insect. Cell morphology and histochemistry. J Morphol. 1966; 119:143-60.
- [31]Rabozzi ML, Dazzini MV. Ricerche sulle ghiandole del protorace di Sipyloidea sipylus. Boll Soc Entomol Ital. 1972; 104:50-7.
- [32]Strong L. Defence glands in the giant spiny phasmid Extatosoma tiaratum. J Entomol. 1975; 50:65-72.
- [33]Marshall WS, Severin HH. Über die Anatomie der Gespenstschrecke, Diapheromera femorata, Say. Archiv Biontologie. 1906; 1:215-44.
- [34]Marquardt F. Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius (Dixippus) morosus. Zool Jahrb Anat Ontogenie Tiere. 1940; 66:63-128.
- [35]Storrer J, Bässler U, Mayer S. Motoneurone im Meso- und Metathorakalganglion der Stabheuschrecke Carausius morosus. Zool Jahrb Allg Zool Physiol Tiere. 1986; 90:359-74.
- [36]Goldammer J, Büschges A, Schmidt J. Motoneurons, DUM cells, and sensory neurons in an insect thoracic ganglion: a tracing study in the stick insect Carausius morosus. J Comp Neurol. 2012; 520:230-57.
- [37]Altman JS, Kien J. Suboesophageal neurons involved in head movements and feeding in locusts. Proc R Soc Lond B. 1979; 205:209-27.
- [38]Altman JS, Kien J. Functional organization of the suboesophageal ganglion in arthropods. In: Arthropod brain. Gupta AP, editor. Wiley, New York; 1987: p.265-301.
- [39]Rast GF, Bräunig P. Feeding-related motor patterns of the locust suboesophageal ganglion induced by pilocarpine and IBMX. J Insect Physiol. 2001; 47:43-53.
- [40]Bässler U. Neural basis of elemantary behavior in stick insects. Springer, Berlin; 1983.
- [41]Pflüger H-J, Sillar K. Motor control. In: Neurosciences. From moleculeto behavior: a university text book. Galizia CG, Lledo P-M, editors. Springer, New York; 2013: p.479-524.
- [42]Lins F, Lakes-Harlan R. Interneurons with inhibitory effects on stridulation in grasshoppers exhibit GABA-like immunoreactivity. Brain Res. 1994; 635:103-12.
- [43]Hustert R. Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res. 1978; 194:337-51.
- [44]Mitchell BK, Itagaki H. Interneurons of the subesophageal ganglion of Sarcophaga bullata responding to gustatory and mechanosensory stimu. J Comp Physiol A. 1992; 171:213-30.
- [45]Simpson SJ. Mechanoresponsive neurones in the suboesophageal ganglion of the locust. Physiol Entomol. 1992; 17:351-69.
- [46]Boyan GS, Altman JS. The suboesophageal ganglion: a 'missing link' in the auditory pathway of the locust. J Comp Physiol A. 1985; 156:413-28.
- [47]Wohlers D, Bacon JP. Sexual dimorphism of motorneurons: Timbal muscle innervation in male periodical cicadas and homologous structures in females. Cell Tissue Res. 1980; 209:371-82.
- [48]Arbas EA. Neural correlates of flight loss in a mexican grasshopper, Barytettix psolus. I. Motor and sensory cells. J Comp Neurol. 1983; 216:369-80.
- [49]Wilson JA, Phillips CE, Adams ME, Huber F. Structural comparison of a homologous neuron in gryllid and acridid insects. J Neurobiol. 1982; 13:459-67.
- [50]Croll RP. Identified neurons and cellular homologies. In: Nervous systems in invertebrates. Ali MA, editor. Springer, New York; 1987: p.41-59.
- [51]Kutsch W, Breidbach O. Homologous structures in the nervous systems of Arthropoda. Adv Insect Physiol. 1994; 24:1-113.
- [52]Honegger H-W, Altman JS, Kien J, Müller-Tautz R, Pollerberger E. A comparative study of neck muscle motor neurons in a cricket and a locust. J Comp Neurol. 1984; 230:517-35.
- [53]Garcia-Scheible I, Honegger H-W. Peripheral neurosecretory cells of insects contain a neuropeptidewith bursicon-like actvity. J Exp Biol. 1989; 141:453-9.
- [54]Dircksen H, Müller A, Keller R. Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell Tissue Res. 1991; 263:439-57.
- [55]Lange AB, Patel K. The presence and distribution of crustacean cardioactive peptide in the central and peripheral nervous system of the stick insect, Baculum extradentatum . 2005.
- [56]Predel R, Kellner R, Gäde G. Myotropic neuropepides from the retrocerebral complex of the stick insect, Carausius morosus (Phasmatodea: Lonchodidae). Eur J Entomol. 1999; 96:275-378.
- [57]Bräunig P, Pflüger H-J. The unpaired median neurons of insects. Adv Insect Physiol. 2001; 28:185-266.
- [58]Ali DW. The aminergic and peptidergic innervation of insect salivary glands. J Exp Biol. 1997; 200:1941-9.
- [59]Ali DW, Orchard I. Immunohistochemical localization of tyrosine hydroxylase in the ventral nerve cord of the stick insect, Carausius morosus, including neurons innervating the salivary glands. Cell Tissue Res. 1996; 285:453-62.
- [60]Bräunig P. The satellite nervous system - an extensive neurohemal network in the locust head. J Comp Physiol A. 1987; 160:69-77.
- [61]Bräunig P. The peripheral branching pattern of identified dorsal unpaired median (DUM) neurones of the locust. Cell Tissue Res. 1997; 290:641-54.
- [62]Carlberg U. Secondary defence in Carausius morosus (de Sinety) (Insecta: Phasmida). Zool Anz. 1985; 215:373-84.
- [63]Nentwig W. Stick insects (Phasmida) as prey of spiders: size, palatability and defence mechanisms in feeding tests. Oecologia. 1990; 82:446-9.
- [64]Kien J. Morphology of locust neckmuscle motoneurons and some of their inputs. J Comp Physiol. 1980; 140:321-36.
- [65]Altman JS: Functional organisation of insect ganglia. In Neurobiology of invertebrates. Adv Physiol Sci 23. Vol. Edited by: Salanki J. Oxford: Pergman Press; 181. p. 537-555.
- [66]Pflüger H-J, Bräunig P, Hustert R. The organization of mechanosensory neuropiles in locust thoracic ganglia. Phil Trans R Soc London B. 1988; 321:1-26.
- [67]Schmitz J, Dean J, Kittmann R. Central projections of leg sensory organs in Carausius morosus (Insecta, Phasmida). Zoomorphology. 1991; 111:19-33.
- [68]Reitze M, Nentwig W. Comparative investigations into the feeding ecology of six Mantodea species. Oecologia. 1991; 86:568-74.
- [69]Carlberg U. Defensive behaviour in adult female Extatosoma tiaratum (MacLeay) (Phasmidae). Entomol Month Mag. 1980; 116:133-8.
- [70]Carlberg U. Chemical defense in Extatosoma tiaratum (Macleay) (Insecta, Phasmida). Zool Anz. 1985; 214:185-92.
- [71]Carlberg U. Defensive behaviour in females of the stick insect Sipyloidea siyplus (Westwood) (Phasmida. Zool Anz. 1981; 207:177-80.
- [72]Tilgner EH, Kiselyova TG, McHugh JV. A morphological study of Timema cristinae Vickery with implications for the phylogenetics of Phasmida. Dt Entomol Zeitschrift. 1999; 46:149-62.
- [73]Davis NT. Serial homologies of the motor neurons of the dorsal intersegmental muscles of the cockroch, Periplaneta americana (L.). J Morphol. 1983; 176:197-210.
- [74]Carlberg U. Postembryonic ontogeny in Sipyloidea sipylus (Westwood) (Insect: Phasmidae). Zool Jb Anat. 1987; 115:273-9.
- [75]Weidler DJ, Diecke FPJ. The role of cations in conduction in the central nervous system of the herbivorous insect Carausius morosus. Z vergl Physiol. 1969; 64:372-99.
- [76]Bässler U. Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint. J Comp Physiol. 1977; 121:99-113.
- [77]Yack JE. Janus Green B as a rapid, vital stain for peripheral nerves and chordotonal organs in insects. J Neurosci Meth. 1993; 49:17-22.
- [78]Pitman RM, Tweedle CD, Cohen MJ. The form of nerve cells: determination by cobalt impregnation. In: Intracellular staining in neurobiology. Nicholson C, Kater SB, editors. Springer, Berlin; 1973: p.83-97.
- [79]Altman JS, Tyrer NM. Filling selected neurons with cobalt through cut axons. In: Neuroanatomical techniques: insect nervous system. Strausfeld NJ, Miller TA, editors. Springer, New York; 1980: p.373-402.
- [80]Strauß J, Lakes-Harlan R. Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol. 2013; 521:3791-803.
- [81]Ma PM. Biotin staining in the giant fiber systems of the lobster. J Comp Neurol. 1994; 341:567-79.