| Journal of Neurodevelopmental Disorders | |
| Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders | |
| Lydie Morel1  Haruki Higashimori1  Yongjie Yang2  | |
| [1] Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA;Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA | |
| 关键词: Developmental disorder; GLT1; Glutamate transporter; Glutamate; Neuronal to astrocyte signaling; Developmental maturation; Astrocyte; | |
| Others : 806171 DOI : 10.1186/1866-1955-5-22 |
|
| received in 2013-06-21, accepted in 2013-08-20, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Recent studies have implicated potentially significant roles for astrocytes in the pathogenesis of neurodevelopmental disorders. Astrocytes undergo a dramatic maturation process following early differentiation from which typical morphology and important functions are acquired. Despite significant progress in understanding their early differentiation, very little is known about how astrocytes become functionally mature. In addition, whether functional maturation of astrocytes is disrupted in neurodevelopmental disorders and the consequences of this disruption remains essentially unknown. In this review, we discuss our perspectives about how astrocyte developmental maturation is regulated, and how disruption of the astrocyte functional maturation process, especially alterations in their ability to regulate glutamate homeostasis, may alter synaptic physiology and contribute to the pathogenesis of neurodevelopmental disorders.
【 授权许可】
2013 Yang et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708090909247.pdf | 727KB | ||
| Figure 3. | 37KB | Image | |
| Figure 2. | 24KB | Image | |
| Figure 1. | 46KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Diagnostic and statistical manual of mental disorders. 4th edition. Washington, DC: American Psychiatric Association; 1994.
- [2]Wassink TH, Brzustowicz LM, Bartlett CW, Szatmari P: The search for autism disease genes. Ment Retard Dev Disabil Res Rev 2004, 10:272-283.
- [3]Li X, Zou H, Brown WT: Genes associated with autism spectrum disorder. Brain Res Bull 2012, 88:543-552.
- [4]Weiss LA, Arking DE, Daly MJ, Chakravarti A: A genome-wide linkage and association scan reveals novel loci for autism. Nature 2009, 461:802-808.
- [5]Luo R, Sanders SJ, Tian Y, Voineagu I, Huang N, Chu SH, Klei L, Cai C, Ou J, Lowe JK, Hurles ME, Devlin B, State MW, Geschwind DH: Genome-wide transcriptome profiling reveals the functional impact of rare de novo and recurrent CNVs in autism spectrum disorders. Am J Hum Genet 2012, 91:38-55.
- [6]Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, Jian M, Liu G, Greer D, Bhandari A, Wu W, Corominas R, Peoples A, Koren A, Gore A, Kang S, Lin GN, Estabillo J, Gadomski T, Singh B, Zhang K, Akshoomoff N, Corsello C, McCarroll S, Iakoucheva LM, Li Y, Wang J, Sebat J: Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 2012, 151:1431-1442.
- [7]O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O’Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J: Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012, 338:1619-1622.
- [8]O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE: Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485:246-250.
- [9]Williams SC: Genetics: Searching for answers. Nature 2012, 491:S4-S6.
- [10]Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999, 23:185-188.
- [11]Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen BE, van Ommen G-JB, Blonden LAJ, Riggins GJ, Chastain JL, Kunst CB, Galjaard H, Caskey CT, Nelson DL, Oostra BA, Warren ST: Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991, 65:905-914.
- [12]Percy AK: Rett syndrome: exploring the autism link. Arch Neurol 2011, 68:985-989.
- [13]Oddi D, Crusio WE, D’Amato FR, Pietropaolo S: Monogenic mouse models of social dysfunction: Implications for autism. Behav Brain Res 2013, 251:75-84.
- [14]DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz RT, Crawley J, Young LJ: The developmental neurobiology of autism spectrum disorder. J Neurosci 2006, 26:6897-6906.
- [15]Silver WG, Rapin I: Neurobiological basis of autism. Pediatr Clin North Am 2012, 59:45-61. x
- [16]McGann JC, Lioy DT, Mandel G: Astrocytes conspire with neurons during progression of neurological disease. Curr Opin Neurobiol 2012, 22:850-858.
- [17]Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH: Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 2012, 26:891-907.
- [18]Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 2012, 486:410-414.
- [19]Liauw J, Hoang S, Choi M, Eroglu C, Sun GH, Percy M, Wildman-Tobriner B, Bliss T, Guzman RG, Barres BA, Steinberg GK: Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab 2008, 28:1722-1732.
- [20]Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA: The classical complement cascade mediates CNS synapse elimination. Cell 2007, 131:1164-1178.
- [21]Allen NJ, Barres BA: Neuroscience: Glia - more than just brain glue. Nature 2009, 457:675-677.
- [22]Barres BA: The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 2008, 60:430-440.
- [23]Tien AC, Tsai HH, Molofsky AV, McMahon M, Foo LC, Kaul A, Dougherty JD, Heintz N, Gutmann DH, Barres BA, Rowitch DH: Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 2012, 139:2477-2487.
- [24]Sauvageot CM, Stiles CD: Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 2002, 12:244-249.
- [25]Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME: Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 1997, 278:477-483.
- [26]Stipursky J, Francis D, Gomes FC: Activation of MAPK/PI3K/SMAD pathways by TGF-beta(1) controls differentiation of radial glia into astrocytes in vitro. Dev Neurosci 2012, 34:68-81.
- [27]Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M, Miyazono K, Kishimoto T, Kageyama R, Taga T: BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci U S A 2001, 98:5868-5873.
- [28]Nagao M, Sugimori M, Nakafuku M: Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol 2007, 27:3982-3994.
- [29]Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ: The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 2006, 52:953-968.
- [30]Barnabe-Heider F, Wasylnka JA, Fernandes KJ, Porsche C, Sendtner M, Kaplan DR, Miller FD: Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 2005, 48:253-265.
- [31]Freeman MR: Specification and morphogenesis of astrocytes. Science 2010, 330:774-778.
- [32]Song MR, Ghosh A: FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004, 7:229-235.
- [33]Stipursky J, Gomes FC: TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia 2007, 55:1023-1033.
- [34]Raff MC, Miller RH, Noble M: A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 1983, 303:390-396.
- [35]Rowitch DH, Kriegstein AR: Developmental genetics of vertebrate glial-cell specification. Nature 2010, 468:214-222.
- [36]Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY: Local generation of glia is a major astrocyte source in postnatal cortex. Nature 2012, 484:376-380.
- [37]Bushong EA, Martone ME, Jones YZ, Ellisman MH: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002, 22:183-192.
- [38]Derouiche A, Frotscher M: Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 2001, 36:330-341.
- [39]Wolff JR: The astrocyte as link between capillary and nerve cell. Triangle 1970, 9:153-164.
- [40]Chao TI RM, Wolff JR: The synapse-astrocyte boundary: anatomical basis for an integrative role of glia in synaptic transmission. In Tripartite synapses: Synaptic transmission with glia. Edited by Volterra A, Magistretti P, Haydon PG. Oxford, New York: Oxford University Press; 2002.
- [41]Reichenbach AWH: Structural association of astrocytes with neurons and vasculature: defining territorial boundaries. In Astrocytes in (patho)physiology of the nervous system. Edited by Parpura VHP. New York: Springer; 2009:251-286.
- [42]Bandeira F, Lent R, Herculano-Houzel S: Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A 2009, 106:14108-14113.
- [43]Bushong EA, Martone ME, Ellisman MH: Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2004, 22:73-86.
- [44]Furuta A, Rothstein JD, Martin LJ: Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 1997, 17:8363-8375.
- [45]Sutherland ML, Delaney TA, Noebels JL: Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J Neurosci 1996, 16:2191-2207.
- [46]Nagy JI, Patel D, Ochalski PA, Stelmack GL: Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 1999, 88:447-468.
- [47]Seifert G, Huttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, Steinhauser C: Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 2009, 29:7474-7488.
- [48]Higashimori H, Sontheimer H: Role of Kir4.1 channels in growth control of glia. Glia 2007, 55:1668-1679.
- [49]Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB: Regulation of the glial Na+−dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 1998, 53:355-369.
- [50]Duan S, Anderson CM, Stein BA, Swanson RA: Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J Neurosci 1999, 19:10193-10200.
- [51]Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A, Gao Y, Vidensky S, Brennan J, Poulsen D, Won Park J, Li Jeon N, Robinson MB, Rothstein JD: Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 2009, 61:880-894.
- [52]Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC: Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 1997, 17:932-940.
- [53]Koulakoff A, Ezan P, Giaume C: Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 2008, 56:1299-1311.
- [54]Rouach N, Glowinski J, Giaume C: Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol 2000, 149:1513-1526.
- [55]Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28:264-278.
- [56]Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M: The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 2007, 27:12255-12266.
- [57]Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD: What is the role of astrocyte calcium in neurophysiology? Neuron 2008, 59:932-946.
- [58]Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M: Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 2006, 9:816-823.
- [59]Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M: Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 2013, 339:197-200.
- [60]Lavialle M, Aumann G, Anlauf E, Prols F, Arpin M, Derouiche A: Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2011, 108:12915-12919.
- [61]Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW: Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol 2006, 4:e343.
- [62]Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M: DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 2005, 8:873-880.
- [63]Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 2005, 4:206-210.
- [64]Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J: Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001, 57:1618-1628.
- [65]Fatemi SH, Folsom TD, Reutiman TJ, Lee S: Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 2008, 62:501-507.
- [66]Gadow KD, Roohi J, DeVincent CJ, Kirsch S, Hatchwell E: Glutamate transporter gene (SLC1A1) single nucleotide polymorphism (rs301430) and repetitive behaviors and anxiety in children with autism spectrum disorder. J Autism Dev Disord 2010, 40:1139-1145.
- [67]Sicca F, Imbrici P, D’Adamo MC, Moro F, Bonatti F, Brovedani P, Grottesi A, Guerrini R, Masi G, Santorelli FM, Pessia M: Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol Dis 2011, 43:239-247.
- [68]Guy J, Hendrich B, Holmes M, Martin JE, Bird A: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 2001, 27:322-326.
- [69]Chen RZ, Akbarian S, Tudor M, Jaenisch R: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001, 27:327-331.
- [70]Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium Cell 1994, 78:23-33.
- [71]Zoghbi HY: Postnatal neurodevelopmental disorders: meeting at the synapse? Science 2003, 302:826-830.
- [72]Bear MF, Huber KM, Warren ST: The mGluR theory of fragile X mental retardation. Trends Neurosci 2004, 27:370-377.
- [73]Ballas N, Lioy DT, Grunseich C, Mandel G: Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 2009, 12:311-317.
- [74]Jacobs S, Nathwani M, Doering LC: Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression. BMC Neurosci 2010, 11:132. BioMed Central Full Text
- [75]Jacobs S, Doering LC: Astrocytes prevent abnormal neuronal development in the fragile x mouse. J Neurosci 2010, 30:4508-4514.
- [76]Yang Q, Feng B, Zhang K, Guo YY, Liu SB, Wu YM, Li XQ, Zhao MG: Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile x syndrome. PLoS Genet 2012, 8:e1003172.
- [77]Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW: Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009, 29:5051-5061.
- [78]Okabe Y, Takahashi T, Mitsumasu C, Kosai K, Tanaka E, Matsuishi T: Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome. PLoS One 2012, 7:e35354.
- [79]Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, Hirrlinger PG, Kirchhoff F, Bissonnette JM, Ballas N, Mandel G: A role for glia in the progression of Rett’s syndrome. Nature 2011, 475:497-500.
- [80]Manent JB, Represa A: Neurotransmitters and brain maturation: early paracrine actions of GABA and glutamate modulate neuronal migration. Neuroscientist 2007, 13:268-279.
- [81]Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, Ogawa M, Obata K, Watanabe M, Hashikawa T, Tanaka K: From the Cover: Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci U S A 2006, 103:12161-12166.
- [82]Choudhury PR, Lahiri S, Rajamma U: Glutamate mediated signaling in the pathophysiology of autism spectrum disorders. Pharmacol Biochem Behav 2012, 100:841-849.
- [83]Jamain S, Betancur C, Quach H, Philippe A, Fellous M, Giros B, Gillberg C, Leboyer M, Bourgeron T: Linkage and association of the glutamate receptor 6 gene with autism. Mol Psychiatry 2002, 7:302-310.
- [84]Serajee FJ, Zhong H, Nabi R, Huq AH: The metabotropic glutamate receptor 8 gene at 7q31: partial duplication and possible association with autism. J Med Genet 2003, 40:e42.
- [85]Barnby G, Abbott A, Sykes N, Morris A, Weeks DE, Mott R, Lamb J, Bailey AJ, Monaco AP: Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am J Hum Genet 2005, 76:950-966.
- [86]Bassell GJ, Warren ST: Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 2008, 60:201-214.
- [87]Huber KM, Gallagher SM, Warren ST, Bear MF: Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 2002, 99:7746-7750.
- [88]Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT: Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 1997, 94:5401-5404.
- [89]Hagerman PJ, Stafstrom CE: Origins of epilepsy in fragile X syndrome. Epilepsy Curr 2009, 9:108-112.
- [90]Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, Jaeschke G, Bear MF, Lindemann L: Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 2012, 74:49-56.
- [91]Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF: Correction of fragile X syndrome in mice. Neuron 2007, 56:955-962.
- [92]Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH, Crawley JN: Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med 2012, 4:131ra151.
- [93]Huang YH, Bergles DE: Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 2004, 14:346-352.
- [94]Danbolt NC: Glutamate uptake. ProgNeurobiol 2001, 65:1-105.
- [95]Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE: Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 2004, 24:4551-4559.
- [96]Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F: Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses. J Physiol 2009, 587:4575-4588.
- [97]Higashimori H, Morel L, Huth J, Lindemann L, Dulla C, Taylor A, Freeman M, Yang Y: Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X Mouse. Hum Mol Genet 2013, 22:2041-2054.
- [98]Tanaka K: Epilepsy and exacerbation of brain injury in mice lacking glutamate transporter GLT-1 (Vol 276, pg 1699, 1997). Science 1997, 278:21-21.
- [99]Takasaki C, Okada R, Mitani A, Fukaya M, Yamasaki M, Fujihara Y, Shirakawa T, Tanaka K, Watanabe M: Glutamate transporters regulate lesion-induced plasticity in the developing somatosensory cortex. J Neurosci 2008, 28:4995-5006.
- [100]Tanaka K: Role of glutamate transporters in the pathophysiology of major mental illnesses. Nihon Shinkei Seishin Yakurigaku Zasshi 2009, 29:161-164.
- [101]Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005, 120:421-433.
- [102]Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, Chakraborty C, Workman G, Weaver M, Sage EH, Barres BA, Eroglu C: Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A 2011, 108:E440-E449.
- [103]Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD: Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 2007, 27:6607-6619.
- [104]Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD: Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 2011, 59:200-207.
- [105]Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N: Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008, 135:749-762.
- [106]Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greenard P, Heintz N: A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008, 135:738-748.
PDF