期刊论文详细信息
Journal of Biomedical Science
Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3β/caveolin signalling in H9c2 rat cardiomyoblasts
Ying-Ming Liou4  Chun-Hwei Chiu2  Wei-Cheng Chen1  Chen-Hua Lu2  Chen-Sen Hsu2  Shih-Ron Hsieh3 
[1] Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan;Department of Cardiovascular Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan;Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
关键词: Oxidative stress;    Caveolin;    EGFP;    H9c2;    Cell cycle;    EGCg;   
Others  :  821765
DOI  :  10.1186/1423-0127-20-86
 received in 2013-08-22, accepted in 2013-11-18,  发布年份 2013
PDF
【 摘 要 】

Background

Epigallocatechin-3-gallate (EGCg) with its potent anti-oxidative capabilities is known for its beneficial effects ameliorating oxidative injury to cardiac cells. Although studies have provided convincing evidence to support the cardioprotective effects of EGCg, it remains unclear whether EGCg affect trans-membrane signalling in cardiac cells. Here, we have demonstrated the potential mechanism for cardioprotection of EGCg against H2O2-induced oxidative stress in H9c2 cardiomyoblasts.

Results

Exposing H9c2 cells to H2O2 suppressed cell viability and altered the expression of adherens and gap junction proteins with increased levels of intracellular reactive oxygen species and cytosolic Ca2+. These detrimental effects were attenuated by pre-treating cells with EGCg for 30 min. EGCg also attenuated H2O2-mediated cell cycle arrest at the G1-S phase through the glycogen synthase kinase-3β (GSK-3β)/β-catenin/cyclin D1 signalling pathway. To determine how EGCg targets H9c2 cells, enhanced green fluorescence protein (EGFP) was ectopically expressed in these cells. EGFP-emission fluorescence spectroscopy revealed that EGCg induced dose-dependent fluorescence changes in EGFP expressing cells, suggesting that EGCg signalling events might trigger proximity changes of EGFP expressed in these cells.

Proteomics studies showed that EGFP formed complexes with the 67 kD laminin receptor, caveolin-1 and -3, β-actin, myosin 9, vimentin in EGFP expressing cells. Using in vitro oxidative stress and in vivo myocardial ischemia models, we also demonstrated the involvement of caveolin in EGCg-mediated cardioprotection. In addition, EGCg-mediated caveolin-1 activation was found to be modulated by Akt/GSK-3β signalling in H2O2-induced H9c2 cell injury.

Conclusions

Our data suggest that caveolin serves as a membrane raft that may help mediate cardioprotective EGCg transmembrane signalling.

【 授权许可】

   
2013 Hsieh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712084134334.pdf 2216KB PDF download
Figure 7. 66KB Image download
Figure 6. 100KB Image download
Figure 5. 86KB Image download
Figure 4. 94KB Image download
Figure 3. 83KB Image download
Figure 2. 127KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Stangl V, Dreger H, Stangl K, Lorenz M: Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 2007, 73:348-358.
  • [2]Mak JC: Potential role of green tea catechins in various disease therapies: Progress and promise. Clin Exp Pharmacol Physiol 2012, 39:265-273.
  • [3]Shieh SR, Tsai DC, Chen JY, Tsai SW, Liou YM: Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation. Pflugers Arch 2009, 458:631-642.
  • [4]Liou YM, Hsieh SR, Wu TJ, Chen JY: Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. Pflugers Arch 2010, 460:1003-1014.
  • [5]Dreger H, Lorenz M, Kehrer A, Baumann G, Stangl K, Stangl V: Characteristics of catechin- and theaflavin-mediated cardioprotection. Exp Biol Med (Maywood) 2008, 233:427-433.
  • [6]Li D, Yang C, Chen Y: Identification of a PKCϵ-dependent regulation of myocardial contraction by epicatechin-3-gallate. Am J Physiol Heart Circ Physiol 2008, 294:H345-H353.
  • [7]Lorenz M, Hellige N, Rieder P: Positive inotropic effects of epigallocatechin-3-gallate (EGCG) involve activation of Na+/H+ and Na+/Ca2+ exchangers. Eur J Heart Fail 2008, 10:439-445.
  • [8]Hirai M, Hotta Y, Ishikawa N, Wakida Y, Fukuzawa Y, Isobe F, Nakano A, Chiba T, Kawamura N: Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts. Life Sci 2007, 80:1020-1032.
  • [9]Townsend PA, Scarabelli TM, Pasini E, Gitti G, Menegazzi M, Suzuki H, Knight RA, Latchman DS, Stephanou A: Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J 2004, 18:1621-1623.
  • [10]Jin S, Zhou F, Katirai F, Li PL: Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011, 15:1043-1083.
  • [11]Das M, Das DK: Lipid raft in cardiac health and disease. Curr Cardiol Rev 2009, 5:105-111.
  • [12]Kurzchalia TV, Parton RG: Membrane microdomains and caveolae. Curr Opin Cell Biol 1999, 11:424-431.
  • [13]Williams TM, Lisanti MP: The Caveolin genes: from cell biology to medicine. Ann Med 2004, 36:584-595.
  • [14]Kukkonen JP: A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium 2011, 50:9-26.
  • [15]Head BP, Patel HH, Roth DM, Murray F, Swaney JS, Niesman IR, Farquhar MG, Insel PA: Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 2006, 281:26391-26399.
  • [16]Everson WV, Smart EJ: Influence of caveolin, cholesterol, and lipoproteins on nitric oxide synthase implications for vascular disease. Trends Cardiovasc Med 2001, 11:246-250.
  • [17]Hagiwara Y, Nishina Y, Yorifuji H, Kikuchi T: Immunolocalization of caveolin-1 and caveolin-3 in monkey skeletal, cardiac and uterine smooth muscles. Cell Struct Funct 2002, 27:375-382.
  • [18]Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M, Horikawa Y, Huang D, Moreno AL, Patel PM, Insel PA, Roth DM: Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 2007, 21:1565-1574.
  • [19]Horikawa YT, Patel HH, Tsutsumi YM, Jennings MM, Kidd MW, Hagiwara Y, Ishikawa Y, Insel PA, Roth DM: Caveolin-3 expression and caveolae are required for isoflurane induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol 2008, 44:123-130.
  • [20]Hsu YC, Liou YM: The anti-cancer effects of (-)-epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J Cell Physiol 2011, 226:2721-2730.
  • [21]Grynkiewicz G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985, 260:3440-3450.
  • [22]Shieh DB, Li RY, Liao JM, Chen GD, Liou YM: Effects of genistein on β-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells. J Cell Physiol 2010, 223:423-434.
  • [23]Peng KW, Liou YM: Differential role of actin-binding proteins in controlling the adipogenic differentiation of human CD105-positive Wharton’s jelly cells. Biochim Biophys Acta 1820, 2012:469-481.
  • [24]Liou YM, Kuo SC, Hsieh SR: Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca2+ sensitivity of cardiac and skeletal muscle. Pflugers Arch 2008, 456:787-800.
  • [25]Lindsey ML, Escobar GP, Mukherjee R, Goshorn DK, Sheats NJ, Bruce JA, Mains IM, Hendrick JK, Hewett KW, Gourdie RG, Matrisian LM, Spinale FG: Matrix metalloproteinase-7 affects Connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation 2006, 113:2919-2928.
  • [26]Vigneron F, Dos Santos P, Lemoine S, Bonnet M, Tariosse L, Couffinhal T, Duplaà C, Jaspard-Vinassa B: GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res 2011, 90:49-56.
  • [27]Omar MA, Wang L, Clanachan AS: Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovasc Res 2010, 86:478-486.
  • [28]Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ: Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 2009, 104:1240-1252.
  • [29]Takahashi-Yanaga F, Sasaguri T: GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008, 20:581-589.
  • [30]Tachibana H, Koga K, Fujimura Y, Yamada K: A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 2004, 11:380-381.
  • [31]Chichili G, Rodgers W: Cytoskeleton–membrane interactions in membrane raft structure. Cell Mol Life Sci 2009, 66:2319-2328.
  • [32]Allen JA, Halverson-Tamboli RA, Rasenick MM: Lipid raft microdomains and neurotransmitter signaling. Nat Rev Neurosci 2007, 8:128-140.
  • [33]Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M: Myocardial AKT: the omnipresent nexus. Physiol Rev 2011, 91:1023-1070.
  • [34]Baines CP: The cardiac mitochondrion: nexus of stress. Annu Rev Physiol 2010, 72:61-80.
  • [35]Whelan RS, Kaplinskiy V, Kitsis RN: Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010, 72:19-44.
  • [36]Chou HC, Chen YW, Lee TR, Wu FS, Chan HT, Lyu PC, Timms JF, Chan HL: Proteomics study of oxidative stress and Src kinase inhibition in H9c2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Free Radic Biol Med 2010, 49:96-108.
  • [37]Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY: Epigallocatechin gallate protects H9c2 cardiomyoblasts against hydrogen dioxides-induced apoptosis and telomere attrition. Eur J Pharmacol 2010, 641:199-206.
  • [38]Daugherty RL, Gottardi CJ: Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology 2007, 22:303-309.
  • [39]Dashwood WM, Carter O, Al-Fageeh M, Li Q, Dashwood RH: Lysosomal trafficking of beta-catenin induced by the tea polyphenol epigallocatechin-3-gallate. Mutat Res 2005, 591:161-172.
  • [40]Li PL, Zhang Y, Yi F: Lipid raft redox signaling platforms in endothelial dysfunction. Antioxid Redox Signal 2007, 9:1457-1470.
  • [41]Zhang AY, Yi F, Zhang G, Gulbins E, Li PL: Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Hypertension 2006, 47:74-80.
  • [42]Tsutsumi YM, Horikawa YT, Jennings MM, Kidd MW, Niesman IR, Yokoyama U, Head BP, Hagiwara Y, Ishikawa Y, Miyanohara A, Patel PM, Insel PA, Patel HH, Roth DM: Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning. Circulation 2008, 118:1979-1988.
  • [43]Kikuchi T, Oka N, Koga A, Miyazaki H, Ohmura H, Imaizumi T: Behavior of caveolae and caveolin-3 during the development of myocyte hypertrophy. J Cardiovasc Pharmacol 2005, 45:204-210.
  • [44]Uray IP, Connelly JH, Frazier OH, Taegtmeyer H, Davies PJA: Mechanical unloading increases caveolin expression in the failing human heart. Cardiovasc Res 2003, 59:57-66.
  • [45]Jasmin JF, Mercier I, Hnasko R, Cheung MW, Tanowitz HB, Dupuis J, Lisanti MP: Lung remodeling and pulmonary hypertension after myocardial infarction: pathogenic role of reduced caveolin expression. Cardiovasc Res 2004, 63:747-755.
  • [46]Piech A, Massart PE, Dessy C, Feron O, Havaux X, Morel N, Vanoverschelde JL, Donckier J, Balligand JL: Decreased expression of myocardial eNOS and caveolin in dogs with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2002, 282:H219-H231.
  • [47]Hare JM, Lofthouse RA, Juang GJ, Colman L, Ricker KM, Kim B, Senzaki H, Cao S, Tunin RS, Kass DA: Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res 2000, 86:1085-1092.
  • [48]Shi Y, Pritchard KA Jr, Holman P, Rafiee P, Griffith OW, Kalyanaraman B, Baker JE: Chronic myocardial hypoxia increases nitric oxide synthase and decreases caveolin-3. Free Radic Biol Med 2000, 29:695-703.
  • [49]Zager RA, Johnson A, Hanson S, Dela Rosa V: Altered cholesterol localization and caveolin expression during the evolution of acute renal failure. Kidney Int 2002, 61:1674-1683.
  文献评价指标  
  下载次数:54次 浏览次数:23次