期刊论文详细信息
Experimental & Translational Stroke Medicine
Intracortical injection of endothelin-1 induces cortical infarcts in mice: effect of neuronal expression of an adenosine transporter
Fiona E Parkinson4  Benedict C Albensi2  Melanie Martin1  Richard Buist3  Dali Zhang4  Hanifi Soylu4 
[1] Department of Physics, University of Winnipeg, Winnipeg, Canada;Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada;Departments of Radiology, University of Manitoba, Winnipeg, Canada;Departments of Pharmacology and Therapeutics, University of Manitoba, A404, 753 McDermot Avenue, Winnipeg, MB, Canada R3E 0 T6
关键词: Caffeine;    Adenosine;    Magnetic Resonance Imaging;    Mouse;    CD1;    Human Equilibrative Nucleoside Transporter 1;    Endothelin 1;   
Others  :  861946
DOI  :  10.1186/2040-7378-4-4
 received in 2012-01-09, accepted in 2012-03-12,  发布年份 2012
PDF
【 摘 要 】

Background

Activation of adenosine A1 receptors has neuroprotective effects in animal stroke models. Adenosine levels are regulated by nucleoside transporters. In vitro studies showed that neuron-specific expression of human equilibrative nucleoside transporter 1 (hENT1) decreases extracellular adenosine levels and adenosine A1 receptor activity. In this study, we tested the effect of hENT1 expression on cortical infarct size following intracerebral injection of the vasoconstrictor endothelin-1 (ET-1) or saline.

Methods

Mice underwent stereotaxic intracortical injection of ET-1 (1 μl; 400 pmol) or saline (1 μl). Some mice received the adenosine receptor antagonist caffeine (25 mg/kg, intraperitoneal) 30 minutes prior to ET-1. Perfusion and T2-weighted magnetic resonance imaging (MRI) were used to measure cerebral blood flow (CBF) and subsequent infarct size, respectively.

Results

ET-1 reduced CBF at the injection site to 7.3 ± 1.3% (n = 12) in hENT1 transgenic (Tg) and 12.5 ± 2.0% (n = 13) in wild type (Wt) mice. At 48 hours following ET-1 injection, CBF was partially restored to 35.8 ± 4.5% in Tg and to 45.2 ± 6.3% in Wt mice; infarct sizes were significantly greater in Tg (9 ± 1.1 mm3) than Wt (5.4 ± 0.8 mm3) mice. Saline-treated Tg and Wt mice had modest decreases in CBF and infarcts were less than 1 mm3. For mice treated with caffeine, CBF values and infarct sizes were not significantly different between Tg and Wt mice.

Conclusions

ET-1 produced greater ischemic injury in hENT1 Tg than in Wt mice. This genotype difference was not observed in mice that had received caffeine. These data indicate that hENT1 Tg mice have reduced ischemia-evoked increases in adenosine receptor activity compared to Wt mice.

【 授权许可】

   
2012 Soylu et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725005646675.pdf 755KB PDF download
97KB Image download
33KB Image download
53KB Image download
43KB Image download
58KB Image download
【 图 表 】

【 参考文献 】
  • [1]Szydlowska K, Tymianski M: Calcium, ischemia and excitotoxicity. Cell Calcium 2010, 47:122-129.
  • [2]Deb P, Sharma S, Hassan KM: Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 2010, 17:197-218.
  • [3]Gui L, Duan W, Tian H, Li C, Zhu J, Chen JF, et al.: Adenosine A 2A receptor deficiency reduces striatal glutamate outflow and attenuates brain injury induced by transient focal cerebral ischemia in mice. Brain Res 2009, 1297:185-193.
  • [4]Matsuoka I, Ohkubo S: ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci 2004, 94:95-99.
  • [5]Zamzow CR, Xiong W, Parkinson FE: Adenosine produced by neurons is metabolized to hypoxanthine by astrocytes. J Neurosci Res 2008, 86:3447-3455.
  • [6]Parkinson FE, Zhang YW, Shepel PN, Greenway SC, Peeling J, Geiger JD: Effects of nitrobenzylthioinosine on neuronal injury, adenosine levels, and adenosine receptor activity in rat forebrain ischemia. J Neurochem 2000, 75:795-802.
  • [7]Frenguelli BG, Wigmore G, Llaudet E, Dale N: Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 2007, 101:1400-1413.
  • [8]Horie N, Maag AL, Hamilton SA, Shichinohe H, Bliss TM, Steinberg GK: Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Meth 2008, 173:286-290.
  • [9]Fuxe K, Cintra A, Andbjer B, Anggard E, Goldstein M, Agnati LF: Centrally administered endothelin-1 produces lesions in the brain of the male rat. Acta Physiol Scand 1989, 137:155-156.
  • [10]Gilmour G, Iversen SD, O'Neill MF, Bannerman DM: The effects of intracortical endothelin-1 injections on skilled forelimb use: implications for modelling recovery of function after stroke. Behav Brain Res 2004, 150:171-183.
  • [11]Wang Y, Jin K, Greenberg DA: Neurogenesis associated with endothelin-induced cortical infarction in the mouse. Brain Res 2007, 1167:118-122.
  • [12]Bacigaluppi M, Comi G, Hermann DM: Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J 2010, 4:34-38.
  • [13]Windle V, Szymanska A, Granter-Button S, White C, Buist R, Peeling J, et al.: An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 2006, 201:324-334.
  • [14]Luo J, Grammas P: Endothelin-1 is elevated in Alzheimer's disease brain microvessels and is neuroprotective. J Alzheimers Dis 2010, 21:887-896.
  • [15]Parkinson FE, Xiong W, Zamzow CR, Chestley T, Mizuno T, Duckworth ML: Transgenic expression of human equilibrative nucleoside transporter 1 in mouse neurons. J Neurochem 2009, 109:562-572.
  • [16]Paxinos G: Franklin KBJ: The mouse brain in sterotaxic coordinates. 2nd edition. San Diego: Academic; 2001.
  • [17]Sozmen EG, Kolekar A, Havton LA, Carmichael ST: A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Meth 2009, 180:261-272.
  • [18]Siesjo BK: Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg 1992, 77:169-184.
  • [19]Villapol S, Bonnin P, Fau S, Baud O, Renolleau S, Charriaut-Marlangue C: Unilateral blood flow decrease induces bilateral and symmetric responses in the immature brain. Am J Pathol 2009, 175:2111-2120.
  • [20]Spiegler M, Villapol S, Biran V, Goyenvalle C, Mariani J, Renolleau S, et al.: Bilateral changes after neonatal ischemia in the P7 rat brain. J Neuropathol Exp Neurol 2007, 66:481-490.
  • [21]van den Tweel ER, Kavelaars A, Lombardi MS, Nijboer CH, Groenendaal F, van Bel F, et al.: Bilateral molecular changes in a neonatal rat model of unilateral hypoxic-ischemic brain damage. Pediatr Res 2006, 59:434-439.
  • [22]Dale N, Frenguelli BG: Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2009, 7:160-179.
  • [23]Zamzow CR, Xiong W, Parkinson FE: Astrocytes affect the profile of purines released from cultured cortical neurons. J Neurosci Res 2008, 86:2641-2649.
  • [24]Parkinson FE, Xiong W: Stimulus- and cell-type-specific release of purines in cultured rat forebrain astrocytes and neurons. J Neurochem 2004, 88:1305-1312.
  • [25]Martin ED, Fernandez M, Perea G, Pascual O, Haydon PG, Araque A, et al.: Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 2007, 55:36-45.
  • [26]Wall MJ, Dale N: Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol 2007, 581:553-565.
  • [27]Wall MJ, Dale N: Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol 2008, 6:329-337.
  • [28]Zhang D, Xiong W, Albensi BC, Parkinson FE: Expression of human equilibrative nucleoside transporter 1 in mouse neurons regulates adenosine levels in physiological and hypoxic-ischemic conditions. J Neurochem 2011, 118:4-11.
  • [29]Lopes LV, Halldner L, Rebola N, Johansson B, Ledent C, Chen JF, et al.: Binding of the prototypical adenosine A(2A) receptor agonist CGS 21680 to the cerebral cortex of adenosine A(1) and A(2A) receptor knockout mice. Br J Pharmacol 2004, 141:1006-1014.
  • [30]Rose JB, Naydenova Z, Bang A, Eguchi M, Sweeney G, Choi DS, et al.: Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection. Am J Physiol Heart Circ Physiol 2010, 298:H771-H777.
  • [31]Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE: Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999, 51:83-133.
  • [32]Kost S, Sun C, Xiong W, Graham K, Cass CE, Young JD, et al.: Behavioral effects of elevated expression of human equilibrative nucleoside transporter 1 in mice. Behav Brain Res 2011, 224:44-49.
  • [33]Buters JT, Tang BK, Pineau T, Gelboin HV, Kimura S, Gonzalez FJ: Role of CYP1A2 in caffeine pharmacokinetics and metabolism: studies using mice deficient in CYP1A2. Pharmacogenetics 1996, 6:291-296.
  文献评价指标  
  下载次数:60次 浏览次数:33次