期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Updates on HIPK2: a resourceful oncosuppressor for clearing cancer
Silvia Soddu2  Cinzia Rinaldo1  Gabriella D’Orazi2 
[1] Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, Rome 00185, Italy;Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome 00158, Italy
关键词: Cytokinesis;    Gene knockout;    siRNA interference;    Tumorigenesis;    Hypoxia;    Genotoxic damage;    Apoptosis;    p53-family members;    Oncosuppressor p53;    HIPK2;   
Others  :  826206
DOI  :  10.1186/1756-9966-31-63
 received in 2012-07-23, accepted in 2012-07-27,  发布年份 2012
PDF
【 摘 要 】

Homeodomain-interacting protein kinase 2 (HIPK2) is a multitalented protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. HIPK2 phosphorylates oncosuppressor p53 for apoptotic activation. In addition, also p53-independent apoptotic pathways are regulated by HIPK2 and can be exploited for anticancer purpose too. Therefore, HIPK2 activity is considered a central switch in targeting tumor cells toward apoptosis upon genotoxic damage and the preservation and/or restoration of HIPK2 function is crucial for an efficient tumor response to therapies. As a proof of principle, HIPK2 knockdown impairs p53 function, induces chemoresistance, angiogenesis, and tumor growth in vivo, on the contrary, HIPK2 overexpression activates apoptotic pathways, counteracts hypoxia, inhibits angiogenesis, and induces chemosensitivity both in p53-dependent and -independent ways. The role of HIPK2 in restraining tumor development was also confirmed by studies with HIPK2 knockout mice. Recent findings demonstrated that HIPK2 inhibitions do exist in tumors and depend by several mechanisms including HIPK2 cytoplasmic localization, protein degradation, and loss of heterozygosity (LOH), recapitulating the biological outcome obtained by RNA interference studies in tumor cells, such as p53 inactivation, resistance to therapies, apoptosis inhibition, and tumor progression. These findings may lead to new diagnostic and therapeutic approaches for treating cancer patients. This review will focus on the last updates about HIPK2 contribution in tumorigenesis and cancer treatment.

【 授权许可】

   
2012 D'Orazi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713090509337.pdf 694KB PDF download
Figure 4. 32KB Image download
Figure 3. 12KB Image download
Figure 2. 33KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
  • [2]Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y: Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 1998, 273:25875-25879.
  • [3]Calzado MA, Renner F, Roscic A, Schmitz ML: HIPK2: a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 2007, 6:139-143.
  • [4]Rinaldo C, Prodosmo A, Siepi F, Soddu S: HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 2007, 85:411-418.
  • [5]Wang RSY: Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011, 30:87. BioMed Central Full Text
  • [6]D’Orazi G, Cecchinelli B, Bruno T, Manni I, HIgashimoto Y, Saito S, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S: Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol 2002, 4:11-19.
  • [7]Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH: Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 2003, 115:177-186.
  • [8]Vousden KH, Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol 2007, 8:275-283.
  • [9]Bode AM, Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004, 4:793-805.
  • [10]Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP: Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 2009, 9:862-873.
  • [11]Selivanova G: Therapeutic targeting of p53 by small molecules. Semin Cancer Biol 2010, 20:46-56.
  • [12]Puca R, Nardinocchi L, Givol D, D’Orazi G: Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 2010, 29:4378-4387.
  • [13]Nardinocchi L, Puca R, D’Orazi G: HIPK2-A therapeutical target to be (re)activated for tumor suppression. Role in p53 activation and HIF-1α inhibition. Cell Cycle 2010, 9:1-6.
  • [14]Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D’Orazi G: Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp Cell Res 2004, 293:311-320.
  • [15]Dauth I, Kruger J, Hofmann TG: Homeodomain-Interacting Protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM. Cancer Res 2007, 67:2274-2279.
  • [16]Wesierska-Gadek J, Schmitz ML, Ranftler C: Roscovitine-activated HIPK2 kinase induces phosphorylation of wtp53 at Ser-46 in human MCF-7 breast cancer cells. J Cell Biochem 2007, 100:865-874.
  • [17]Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML: Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002, 4:1-10.
  • [18]Puca R, Nardinocchi L, Sacchi A, Rechavi G, Givol D, D'Orazi G: HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer 2009, 8:1-14.
  • [19]Gresko E, Roscic A, Ritterhoff S, Vichalkovski A, Del Sal G, Schmitz ML: Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J 2006, 25:1883-1894.
  • [20]Marchetti A, Cecchinelli B, D'Angelo M, D'Orazi G, Crescenzi M, Sacchi A, Soddu S: p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK-MAPK. Cell Death Differ 2004, 11:596-607.
  • [21]D'Orazi G, Sciulli MG, Di Stefano V, Riccioni S, Frattini M, Falcioni R, Bertario L, Sacchi A, Patrignani P: Homeodomain-interacting protein kinase-2 restrains cytosolic phospholipase A2-dependent prostaglandin E2 generation in human colorectal cancer cells. Clin Cancer Res 2006, 12:735-741.
  • [22]Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E, Notterman DA, Scarsella M, Leonetti C, Sacchi A, Blandino G, Givol D, D’Orazi G: Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res 2008, 68:3707-3714.
  • [23]Puca R, Nardinocchi L, Starace G, Rechavi G, Sacchi A, Givol D, D’Orazi G: Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Radic Biol Med 2010, 48:1338-1346.
  • [24]Kamata T: Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci 2009, 100:1382-1388.
  • [25]Puca R, Nardinocchi L, Bossi G, Sacchi A, Rechavi G, Givol D, D'Orazi G: Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Exp Cell Res 2009, 315:67-75.
  • [26]Coyle P, Philcox JC, Carey LC, Rofe AM: Metallothionein: the multipurpose protein. Cell Molec Life Sciences 2002, 59:627-647.
  • [27]Cherian MG, Jayasurya A, Bay B-H: Metallothioneins in human tumors and potential roles in carcinogenesis. Mut Res 2003, 533:201-209.
  • [28]Loh SN: The missing zinc: p53 misfolding and cancer. Metallomics 2010, 2:442-449.
  • [29]Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C, Jacob-Hirsch J, Gelernter I, Harmelin A, Barshack I, Rechavi G, D’Orazi G, Givol D, Amariglio N: Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer 2012, 131:562-568.
  • [30]Crone J, Glas C, Schultheiss K, Moehlenbrink J, Krieghoff-Henning E, Hofmann TG: Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis. Cancer Res 2011, 71:2350-2359.
  • [31]Li Q, Lin S, Wang X, Lian G, Lu Z, Guo H, Ruan K, Wang Y, Ye Z, Han J, Lin SC: Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nat Cell Biol 2009, 11:1128-1135.
  • [32]Di Stefano V, Blandino G, Sacchi A, Soddu S, D’Orazi G: HIPK2 neutralizes MDM2 inhibition by rescuing p53 transcriptional activity and apoptotic function. Oncogene 2004, 23:5185-5192.
  • [33]Lazzari C, Prodosmo A, Siepi F, Rinaldo C, Galli F, Gentileschi M, Bartolazzi A, Costanzo A, Sacchi A, Guerrini L, Soddu S: HIPK2 phosphorylates DNp63α and promotes its degradation in response to DNA damage. Oncogene 2011, 30:4802-4813.
  • [34]Zhang Q, Nottke A, Goodman R: Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci USA 2005, 102:2802-2807.
  • [35]Issaeva N, Bozko P, Enge M, Protopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G: Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004, 12:1321-1328.
  • [36]Di Stefano V, Mattiussi M, Sacchi A, D’Orazi G: HIPK2 inhibits both MDM2 gene and protein by, respectively, p53-dependent and independent regulations. FEBS Lett 2005, 579:5473-5480.
  • [37]Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, Soddu S: MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 2007, 25:739-750.
  • [38]Rinaldo C, Prodosmo A, Siepi F, Moncada A, Sacchi A, Selivanova G, Soddu S: HIPK2 regulation by MDM2 determines tumor cell response to the p53-reactivating drugs Nutlin-3 and RITA. Cancer Res 2009, 69:6241-6248.
  • [39]Nardinocchi L, Puca R, Givol D, D’Orazi G: Counteracting MDM2-induced HIPK2 downregulation restores HIPK2/p53 apoptotic signaling in cancer cells. FEBS Lett 2010, 584:4253-4258.
  • [40]Pierantoni GM, Rinaldo C, Esposito F, Mottolese M, Soddu S, Fusco A: High mobility group A1 (HMGA1) proteins interact with p53 and inhibit its apoptotic activity. Cell Death Diff 2006, 13:1554-1563.
  • [41]Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S, Fusco A: High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 2007, 117:693-702.
  • [42]Bon G, Di Carlo SE, Folgiero V, Avetrani P, Lazzari C, D'Orazi G, Brizzi MF, Sacchi A, Soddu S, Blandino G, Mottolese M, Falcioni R: Negative regulation of B4 integrin transcription by homeodomain-interacting protein kinase-2 and p53 impairs tumor progression. Cancer Res 2009, 69:5978-5986.
  • [43]Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, Trovato M, Piaggio G, Bartolazzi A, Soddu S, Sciacchitano S: Repression of the anti-apoptotic molecule Galectin-3 by HIPK2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol 2006, 26:4746-4757.
  • [44]Lavra L, Rinaldo C, Ulivieri A, Luciani E, Fidanza P, Giacomelli L, Bellotti C, Ricci A, Trovato M, Soddu S, Bartolazzi A, Sciacchitano S: The loss of the p53 activator HIPK2 is responsible for Galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS One 2011, 6(6):e20665.
  • [45]Mao JH, Wu D, Kim IJ, Kang HC, Wei G, Climent J, Kumar A, Pelorossi FG, DelRosario R, Huang EJ, Balmain A: Hipk2 cooperates with p53 to suppress γ-ray radiation-induced mouse thymic lymphoma. Oncogene 2011, 31:1176-1180.
  • [46]Petroni M, Veschi V, Prodosmo A, Rinaldo C, Massimi I, Carbonari M, Dominici C, McDowell HP, Rinaldi C, Screpanti I, Frati L, Bartolazzi A, Gulino A, Soddu S, Giannini G: MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA damage response. Mol Cancer Res 2011, 9:67-77.
  • [47]Muschik D, Braspenning-Wesch I, Stockgleth E, Rosl F, Hofmann TG, Nindl I: Cutaneous HPV23 E6 prevents p53 phosphorylation through interaction with HIPK2. PLoS One 2011, 6(11):e27655.
  • [48]Wei G, Ku S, Ma GK, Saito S, Tang AA, Zhang J, Mao JH, APpella E, Balmain A, Huang EJ: HIPK2 represses β-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proc Natl Acad Sci USA 2007, 104:13040-13045.
  • [49]Kim E-A, Kim JE, Sung KS, Choi DW, Lee BJ, Choi CY: Homeodomain-interacting protein kinase 2 (HIPK2) targets β-catenin for phosphorylation and proteasomal degradation. Biochem Biophys Res Commun 2010, 394:966-971.
  • [50]Puca R, Nardinocchi L, D’Orazi G: Regulation of vascular endothelial growth factor expression by homeodomain-interacting protein kinase-2. J Exp Clin Cancer Res 2008, 27:1-7. BioMed Central Full Text
  • [51]Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S, Aikawa Y, Kimura A, Kitabayashi I: Mutations of the HIPK2 gene in acute myeloid leukemia and myelodisplatic sindrome impair AML-1 and p53-mediated transcription. Oncogene 2007, 26:7231-7239.
  • [52]Calzado MA, de la Vega L, Moller A, Bowtell DD, Schmitz ML: An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol 2009, 11:85-91.
  • [53]Semenza GL: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2010, 29:625-634.
  • [54]Nardinocchi L, Puca R, Guidolin D, Belloni AS, Bossi G, Michiels C, Sacchi A, Onisto M, D’Orazi G: Transcriptional regulation of hypoxia-inducible factor 1α by HIPK2 suggests a novel mechanism to restrain tumor growth. Biochem Biophys. Acta MCR 2009, 1793:368-377.
  • [55]Nardinocchi L, Puca R, Sacchi A, D’Orazi G: Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. Mol Cancer 2009, 8:1.
  • [56]Puca R, Nardinocchi L, Pistritto G, D’Orazi G: Overexpression of HIPK2 circumvents the blockade of apoptosis in chemoresistant ovarian cancer cells. Gynecol Oncol 2008, 109:403-410.
  • [57]Sendoel A, Kohler I, Fellmann C, Lowe SW, Hengsrtner MO: HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 2010, 465:577-583.
  • [58]Nardinocchi L, Puca R, D'Orazi G: HIF-1α antagonizes p53-mediated apoptosis by triggering HIPK2 degradation. Aging (Albany NY) 2011, 3:33-43.
  • [59]Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, Grasselli A, Leonetti C, Safran M, Rechavi G, Givol D, Farsetti A, D’Orazi G: Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS One 2010, 5:1-12.
  • [60]Sheffer M, Simon AJ, Jacob-Hirsch J, Rechavi G, Domany E, Givol D, D’Orazi G: Genome-wide analysis discloses reversal of the hypoxia-induced changes of gene expression in colon cancer cells by zinc supplementation. Oncotarget 2011, 2:1191-1202.
  • [61]Rinaldo C, Moncada A, Gradi A, Ciuffini L, D'Eliseo D, Siepi F, Prodosmo A, Giorgi A, Pierantoni GM, Trapasso F, Guarguaglini G, Bartolazzi A, Cundari E, Schininà ME, Fusco A, Soddu S: HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody. Mol Cell 2012, 47:87-98.
  • [62]Ganem NJ, Storchova Z, Pellman D: Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007, 17:157-162.
  • [63]Nardinocchi L, Puca R, Sacchi A, D’Orazi G: HIPK2 knock-down compromises tumor cell efficiency to repair damaged DNA. Biochem Biophys Res Commun 2007, 361:249-255.
  文献评价指标  
  下载次数:34次 浏览次数:30次